Mechanics Minor - Massive Past Paper Mix - Mark Schemes

M2 Jan 01 Q1

M2 Jan 01 Q2 2. (i) $24 \begin{pmatrix} 3 \\ 2 \end{pmatrix} + 4 \begin{pmatrix} 7 \\ 1 \end{pmatrix} - 6.25 \begin{pmatrix} 4 \\ 2 \end{pmatrix} = 21.75 \begin{pmatrix} \bar{x} \\ \bar{y} \end{pmatrix}$ M1 Appropriate method B1 All masses correct B1 At least two sets of coordinates correct on LHS so (3.44827..., 1.81609..) E1A1 [5] giving (3.45, 1.82), (3 s.f.) [If separate components used, award the 2nd B1 if all the terms correct for 1 cpt] (ii) $\tan \theta = \frac{0.4483}{2.1839}$ M1 Correct angle identified 4 - 1.816 B1 Use of their \tilde{y} and given \tilde{x} , including 4 - their 1.816. = 2.184so 11.6°, (3 s.f.) Al (Accept 11.7° found if rounded values used) [3] 6.25 cm2 has mass 0.05 kg so density is 0.008 kg cm-2 B1 May be implied So $21.75 \times 0.008g \times 0.4483 = 3F$ M1 Moments used (allow mass instead of weight) B1 Use of weight F = 0.2547... so about 0.255 N A1 [4] (iv) y coordinate unchanged so 1.82, (3 s.f.) B1 Accept without comment $21.75\bar{x} = 75 - 4 \times 7 + 4 \times 6$ M1 Attempt to deal with the fold. Masses must be consistent. Total mass is their 21.75 from (iii).

Al cao

[Total 15]

[3]

 $\bar{x} = 3.2643...$ so 3.26, (3 s.f.)

M2 Jan 01 Q3

3. (i)

 \overrightarrow{A} 1.5 × 1000 + 2.5 × 1500 + 4 × 1000 = 5R

$$9250 = 5R$$

 $R = 1850$ so 1850 N vert upwards

(ii)

$$\tan \theta = \frac{3}{5}$$
, $\sin \theta = \frac{3}{\sqrt{34}}$

Either

$$9250 = 5T\sin\theta$$

$$T = 3595.75...$$
 so 3596 N (4 s.f.)

Or Using (i) $T \sin \theta = 1850$

$$T = \frac{1850\sqrt{34}}{3} = 3595.75...$$

so 3596 N (4 s.f.)

(iii) Resolve horizontally and vertically

↑
$$Y + 1850 = 3500$$
 so $Y = 1650$
→ $X - T\cos\theta = 0$ ⇒ $X = 1850 \cot\theta = \frac{9250}{3}$

$$\sqrt{1650^2 + (\frac{9250}{3})^2} = 3497.06..$$

so 3497 N (4 s.f.)

angle is $\arctan(\frac{3\times1650}{9250}) = 28.152...$ so about 28.2° above horizontal B1 Diagram. Ignore horizontal forces. Lengths not required.

M1 Moments about A. Must show terms. B1 Moment of weight of beam

E1 Direction not required

[4]

B1 Diagram. Must have X and Y or resultant. Award if method correct with correct signs and angles.

B1 Either seen or implied

M1 Moments about A

B1 Dealing with moment of T (sin θ need not be evaluated)

A1 Accept 2 s.f. or better.

[5]

M1 B1 for $T \sin \theta$.

A1 Accept 2 s.f. or better.

M1 Both attempted or resolve + moments

B1

B1 Accept any form

M1 correct method for magnitude or direction

A1 cao. Accept 2.s.f. or better

A1 cao Accept 2 s.f. or better. Must specify or imply direction with horiz or vertical; accept a clear diagram. [6]

M2 Jan 01 Q4

4. (i) $50 \times 6000 = 300\ 000\ J$ B1[1] Either Considering the total work done M1 Must have weight term $25F + 1500g \sin 20 \times 25 = 300000$ В1 B1 Each term on LHS F = 6972.30.. so 6972 N (4 s.f.) A1 Accept 2 or 3 s.f. Tension in wire is $\frac{6000}{0.5} = 12000$ M1 Use of $T = \frac{P}{V}$, explicit or Or implied. A1 so $12000 = F + 1500g \sin 20$ M1 Must have weight term F = 6972.30.. so 6972 N (4 s.f.) A1 Accept 2 or 3 s.f. [4] (iii) $\mu = \frac{6972.30...}{1500 \times 9.8 \times \cos 20}$ M1 Use of $F = \mu R$ B1 Correct R = 0.50474... so 0.50 (2 s.f.)E1 [3] (iv) New $F_{\text{max}} = 0.5(1500g\cos 20 + 16000\sin 15)$ M1 Attempt to find new F = 8977.293.... A1 Need not be evaluated Either Using work-energy M1 Equating WD by shovel to WD against friction + GPE + KE $16000\cos 15x$ B1 $= 8977.293...x + 1500g \sin 20x + \frac{1}{2} \times 1500 \times 2.5^{2}$ B1 for KE term B1 Other terms (FT for friction) x = 3.233... so 3.23 m (3 s.f.) A1 cao Or Using N2L M1 Use of N2L and 'uvast' $16000\cos 15 - 8977.293.. - 1500g\sin 20 = 1500a$ M1 Accept no weight term. All other forces present. a = 0.966549...A1 Need not be evaluated. FT for friction. $2.5^2 = 0 + 2as$ B1 (or other valid sequence of 'uvast''. FT wrong a. x = 3.233... so 3.23 m (3 s.f.) A1 cao [7] [Total 15]

M3 Jan 01 Q1

1. (i)
$$T^{-1} = (MLT^{-2})^{\alpha}L^{\beta}(ML^{-1})^{\gamma}$$

 $0 = \alpha + \gamma$
 $0 = \alpha + \beta - \gamma$
 $-1 = -2\alpha$
 $\alpha = \frac{1}{2}, \beta = -1, \gamma = -\frac{1}{2}$

M1 two equations M1 third equation E1

(ii)
$$T = \frac{500 \times 0.045}{0.9}$$

= 25 N

M1 Hooke's law

(iii)
$$40 = \frac{500(0.81-l_0)}{l_0}$$
$$40l_0 = 405 - 500l_0$$
$$l_0 = 0.75$$

M1 A1 equation M1 solving A1

(iv) $\frac{f_A}{f_B} = \left(\frac{T_A}{T_B}\right)^{\frac{1}{2}} \left(\frac{I_A}{I_B}\right)^{-1} \left(\frac{z_A}{z_B}\right)^{-\frac{1}{2}}$ $= \left(\frac{25}{40}\right)^{\frac{1}{2}} \left(\frac{0.945}{0.81}\right)^{-1} \left(\frac{0.9m/0.945}{0.75m/0.81}\right)^{-\frac{1}{2}}$

= 0.668 so ratio 0.668:1 or 1:1.497

M1 using formula for f_A or f_B

M1 attempt ratio

M1 0.75/0.81 or 0.9/0.945 or equivalent seen

A1 or any equivalent form

(i) Before

$$\begin{array}{ccc} P \rightarrow & \leftarrow Q \\ 2 \text{ m s}^{\text{-1}} & \frac{4}{3} \text{ m s}^{\text{-1}} \end{array}$$

After

PCLM

$$55 \times 2 - 45 \times \frac{4}{3} = 100\nu$$

M1 PCLM applied B1 signs consistent

 $v = 0.5 \text{ so } 0.5 \text{ m s}^{-1}$

in original direction of Percy

Αl

F1 Either explicit or implied by diagram

Impulse is |55(2-0.5)| = 82.5 Ns

F1

[5]

(ii) Before

$$PQ \rightarrow R \rightarrow 0.5 \text{ m s}^{-1} \text{ } \nu \text{ m s}^{-1}$$

After

$$PQ \rightarrow R \rightarrow 0.1 \text{ m s}^{-1} \quad v' \text{ m s}^{-1}$$

PCLM

$$50 + 60\nu = 10 + 60\nu'$$

3v' - 3v = 2

M1 PCLM A1 Any form

NEL

$$\frac{\frac{v'-0.1}{v-0.5}}{v'+0.2v=0.2} = -0.2$$

M1 Including consistent use of signs

A1 Any form

Solving
$$v = -\frac{7}{18}$$
, $v' = \frac{5}{18}$

So before, $-\frac{7}{18}$ m s⁻¹ (opp dir to PQ) after, $\frac{5}{18}$ m s⁻¹ (same dir as PQ)

A1 A1

(Award max A1 for final answers unless directions both specified or implied by Diagram) [6]

(i) $20 \times 9.8 \times 5 \times \sin 35 - \frac{1}{2} \times 20 \times (6^2 - 4^2)$

• ` ` ′

= 362.104.. so 362 J (3sf)

- (ii) 5F = 362.104... so F = 72.4209... $R = 20 \times 9.8 \times \cos 35$ $\mu = 0.4510...$ so 0.45 (2sf)
- iii) $\mu mg \cos 35 = mg \sin 35$ $\mu = 0.70 \text{ (2sf)}$
- iv) $72.2492... \times x + 520 20gx \sin 35$ = $\frac{1}{2} \times 20 \times 6^2$

x = 3.982... so 3.98 m (3 sf)

M1 Difference in GPE and KE

B1 GPE term

B1 Either KE term

A1 Accept 2 sf

[4]

B1 B1

M1 Use of $F = \mu R$

E1

[4]

[5]

Ml

A1 (Accept WW for both marks) [2]

M1 Use of work-energy, allow 1 term missing

B1 Equation contains GPE term M1 All relevant terms present

A1 Signs correct

Al cao

[FT original μ from (ii) for full marks] [Total 15]

(i)
$$10\left(\frac{\vec{x}}{\vec{y}}\right) = 2\left(\frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}}\right) + 2\left(\frac{\frac{3}{2}}{\frac{\sqrt{3}}{2}}\right) + 3\left(\frac{2.75}{3\sqrt{3}}\right) + 3\left(\frac{5}{3\sqrt{3}}\right)$$

MI Appropriate method
B1 Correct masses
B1 At least two *x* cpts correct
B1 At least two *y* cpts correct
E1 A1

(i) cm gives a clockwise moment about C
Reaction at A cannot give an a.c. moment
E1 Considering moments
E1 Complete argument

[2]

iii) Moments about C

$$2w = 25g \times 0.725$$
A1
B1 Use of weight
$$w = 88.8125 \text{ so about } 88.81 \text{ N}$$
A1 cao

[4]

iv) Moments about A

$$3\frac{\sqrt{3}}{2}F = 25g \times 2.725$$
A1 Must be a correct statement
$$F = 256.968... \text{ so about } 257 \text{ N}$$
A1 Any reasonable accuracy
[3]

	$5000 = F \times 2.5$	MI	Use of $P = Fv$	
	F = 2000 so 2000 N	Al		2
	$\frac{1}{2} \times 6000 \times 3^2 - \frac{1}{2} \times 6000 \times 2.5^2$	MI	Work-energy equation with all terms	
	2 2	BI	One KE term correct	
	1000 000 000 MOVA 100 000		4 TO THE SECOND STATE OF BUILDING BUT IN SEC.	
	$=8000 \times 10 - W$	B1	WD by driving force correct	
	W = 71750 so 71750 J	E1	Clearly shown	
	Distance travelled is $\frac{2.5+3}{2} \times 10 = 2$	7.5 m B1	=	
	Hence $F \times 27.5 = 71750$	MI	WD is Fd	
	F = 2609.09 so 2610 N (3 s.f.)	AI		7
N.	or	1000		
	3 = 2.5 + 10a so $a = 0.05$	MI	Appropriate uvast	
		AI	For a	
	$3^2 = 2.5^2 + 2 \times 0.05 \times s$ so $s = 27.5$	BI		
	$\frac{8000}{2.75}$ - $R = 6000 \times 0.05$ so $R = 2609$	MI	N2L and use of P/v	
	2.75 - N = 0000 × 0.03 St N = 2009	Al	The did use of the	
	W/D = 2600.00 - 27.5 - 21750.1	MI	WD is Fd	
	WD = 2609.09×27.5 = 71750 J	A1		
)	Time taken is given by			
	$100 = \frac{3+3.25}{2} \times t \text{ so } t = 32$	В1		
	WD is $\frac{1}{2} \times 6000 (3.25^2 - 3^2)$	MI	Work-energy. All terms present	
	$+6000 \times 9.8 \times 100 \times \frac{1}{20}$	- М1	Attempt at GPE change	1
	20) Al	GPE change correct	
	+2000×100	10000		
	≈ 498687.5	AI		
	$P = \frac{498687.5}{32} = 15583.98 \text{ so } 15.6 \text{ k}$	W (3 s.f.) F1	FT from their WD	6
	or			
	Using uvast	MI	Appropriate uvast + N2L	
	a = 0.0078125	Al		
	t = 32	BI		
	$F - 2000 - \frac{6000g}{20} = 6000a$	MI	N2L all terms present	
	so F = 4986.875	AI		
	Power is $\frac{4986.875 \times 100}{32} = 15.6 \text{ kW}$	(3 s.f.) FI		3

(i)	GPE loss is $(6g - 4g) \times 0.8 = 1.6g$ J (= 15.68 J)	M1 A1	GPE is mgh in any expression Accept either form	2
(ii)	$\frac{1}{2}(6+4)v^2 = 15.68$ so $v = 1.7708$ so 1.77 m s^{-1}	M1 B1 A1	Equate Δ KE to Δ GPE Use of 10 kg and 15.68 FT their GPE loss	3
	or Use of N2L Use of <i>uvast</i> to give $a = 0.2g$ v = 1.7708 so 1.77 m s ⁻¹	M1 M1 A1	Attempt to find acceleration. [M0 for $a = g$] Must be appropriate. Accept a wrong but not $a = g$.	
(iii) (A)	$15.68 - 0.8 \times 12 = \frac{1}{2} \times 10 \times v^2$	MI	Work-energy including WD against resistance, GPE and KE. Accept sign error.	
	$v^2 = 1.216$	Al	FT from (i)	
	KE of B is $\frac{1}{2} \times 4 \times v^2 = 2.432 \text{ J}$	Al	FT from (i)	3
	or N2L and <i>uvast</i> to give accn 0.76 m s ⁻² $v^2 = 1.216$ KE 2.432 J	MI Al Al	N2L must be used. Resistance must be included.	
(B)	Suppose B rises an extra distance x 2.432 = $12x + 4 \times 9.8 \times x$ so $x = 0.0475$	MI BI FI	Trying to find this distance. Award without weight term All terms present. Accept sign error. Accept their KE from (A) FT	3
	or N2L - 12 - 4g = 4a a = -12.8 x = 0.0475	M1 A1 A1		
(C)	For downward motion $\frac{1}{2} \times 4 \times v^2 = 0.8475g \times 4 - 12 \times 0.8475$ $v = 3.39499 \text{ so } 3.39 \text{ m s}^{-1} (3 \text{ s.f.})$	MI BI AI	Work-energy equation, all terms present. Signs correct. Use of $0.8 + \mathbf{their} x$ cao	3
	or s = 0.8475 N2L and <i>uvast</i> giving accn 6.8 m s ⁻² v = 3.39499 so 3.39 m s ⁻¹ (3 s.f.)	B1 M1 A1	Award for 0.8 + their x N2L and appropriate <i>uvast</i> cao	10t 14

(i)	$\vec{x} = \vec{y}$	BI	Symmetry; must be explicit.	
	For \bar{x}	MI	Method for c.m.	
	$(0.4^2 - 0.2^2)\overline{x} = 0.4^2 \times 0.2 - 0.2^2 \times 0.3$	BI	All masses correct	1
	$0.4 - 0.2 \mu = 0.4 \times 0.2 - 0.2 \times 0.3$	Al	At most one c.m. wrong. If vector used award if not	1
	70400 - 1040		more than one error in either x or y component	1
	c.m. is at $\left(\frac{1}{6}, \frac{1}{6}\right)$	EI		5
	C.III. IS at (6, 6)		[Award 1st B1 if other component calculated separately	
			with same answer]	
(ii)				
	$1.6\overline{x} = 0.4 \times 0.2 + 0.2 \times 0.4 + 0.2 \times 0.3 + 0.2^{2}$	MI	Method for c.m.	1
	+0.2×0.1	BI	Masses correct	
		BI	At least two c.m. correct. If vector used then at least two	
	A SWARDER	1	c.m. have either x or y cpts correct.	
	$\vec{x} = \frac{0.28}{1.6} = 0.175$	El		
	so (0.175, 0.175)	ВІ	Symmetry; must be explicit. [Award if other component	5
			calculated separately with same answer]	
(iii)				
	For \bar{x} of composite figure	MI	Method could lead to solution. Allow up to 2 parts of the figure missing.	
			the figure mussing.	
	$(1.6 \times 0.6 + 2 \times 0.12)\bar{x}$	ВІ	Total mass	
	$=1.6\times0.6\times0.175+2\times0.12\times\frac{1}{6}$	ВІ	First term [If divided into plane parts, award for	
	-1.0×0.0×0.175+2×0.12×6	DI.	4 or equivalent parts correct	
		BI	Second term [If divided into plane parts, award for	
	0.208 (12)		6 or equivalent parts correct]	
	so $\bar{x} = \frac{0.208}{1.2} = 0.173 \left(= \frac{13}{75} \right)$	Al	cao. Award for x or y correct	
	(,5)	Ai	cao. Award for x or y correct	
	so (0.173, 0.173, 0.3)	FI	\bar{y} or \bar{z} by symmetry (may be implied)	6
				Tot
				16
				-

(a) (i)	$A \frac{U \bigwedge_{3 \text{ m}} \bigwedge_{2 \text{ m}}^{V}}{1 \text{ m}} B$ 180 N	В1	Accept no or wrong dimensions Must have correct labels and arrows	1
(ii)	Moments about X			
	$3 \times 180 - 5\nu = 0$ $\nu = 108 \text{ so } 108 \text{ N}$	M1 A1	moments	
	Resolve vertically			
(b)	U + V = 180 so $U = 72$ so 72 N	MI Al	Or take moments again [Deduct one mark if 180g instead of 180]	4
(i)	720 N 4 m 180 N F 70° A			
		BI MI Al	Award for R = 900 if moments taken about top of ladder Moments equation using angles with at least 2 terms One correct term	
	= 8S sin 70	EI	Second correct term Clearly shown [Award 4/5 if $F = S$ not established by resolution]	5
(ii)	All other terms constant so $F \uparrow as x \uparrow$ Hence worst case is $x = 8$ giving $F = 810 \tan 20$	El El	Clearly explained. [Award if $x = 8$ used without explanation]	
	with $R = 900$ Since $F \le F_{\text{max}} = \mu R$,	BI	Values of both R and F .	
		MI	Use of $F = \mu R$	
	$\mu \ge \frac{810 \tan 20}{900} = \frac{9 \tan 20}{10} (= 0.3275)$	Al	cao. Inequality required. Accept >. Accept inequality stated and not justified.	5 Tot
				15

1(i)	[velocity] = LT^{-1} [acceleration] = LT^{-2}	B1		
	[force] = MLT ²	B1	*	<u> </u>
(ii)	[work done] = [F.d] = MLT ⁻² .L = ML ² T ⁻² [KE] = [$\frac{1}{2}mv^2$] = M(LT ⁻¹) ² = ML ² T ⁻² [GPE] = [mgh] = M.LT ⁻² .L = ML ² T ⁻²	B1	Must be shown, not just stated	2
	$[KE] = [\frac{1}{2} mv^2] = M(LT^{-1})^2 = ML^2T^{-2}$	B 1		
	$[GPE] = [mgh] = M.LT^{2}.L = ML^{2}T^{2}$	B 1		
				3
(iii)	$Y = \frac{\pi_0}{4\pi}$	M1	rearranging	
	$[Y] = \frac{MLT^{-2}L}{L^{2}L}$	M1	substitute dimensions	
	$= ML^{-1}T^{-2}$	A1	cao	
				3
(iv)	$ML^2T^{-2} = (ML^{-1}T^{-2})^{\alpha}L^{\beta}L^{\gamma}$	MI	substitute dimensions	1
	$\alpha = 1$	A1		i
	$-1+\beta+\gamma=2$	M1	equating powers of L	1
	$\beta + \gamma = 3$	A1	cao	
	58 NE W			4

M2 Jan 01 Q2

(i)	$10m\left(\frac{\vec{x}}{\vec{y}}\right) = 4m\left(\frac{-3}{4}\right) + 3m\left(\frac{0}{0}\right) + m\left(\frac{2}{0}\right) + 2m\left(\frac{5}{4}\right)$	M1	Appropriate method for at least one cpt	
	$(\bar{y})^{-4m}(4)^{+5m}(0)^{+m}(0)^{+2m}(4)$	A1	Either at least two non-zero RHS terms	
	giving (0, 2.4)	A1 A1 A1	or all masses and at least 3 cpts correct All correct Each cpt	5
(ii)	By symmetry $\bar{x} = 1$	В1	Accept no reason given	
	$12m\overline{y} = 5m \times 2 + 2m \times 0 + 5m \times 2 \Rightarrow \overline{y} = \frac{5}{3}$	M1 A1	Lengths of rods and their mass	
	3	M1	Award for method using appropriate masses and c.m. at mid-points of rods	
		A1	nasses and c.m. at mid points of roas	5
(iii)	$22m\left(\frac{\vec{x}}{\vec{y}}\right) = 10m\left(\frac{0}{2.4}\right) + 12m\left(\frac{1}{\frac{5}{3}}\right)$ giving $\left(\frac{6}{11}, 2\right)$	MI	Any correct method	
	giving $\left(\frac{6}{11},2\right)$	F1 F1	Each component	3
(iv)	Take moments about line of symmetry either for composite body	M1	Award for any clear attempt	
	$22mg\left(1-\frac{6}{11}\right) = Mg \times 1$	B1	Distance on LHS Award for use of their values. Condone use of mass not weight.	
	Hence $M = 10m$	A1	cao	3
	or omitting rods			
	$(10m + M) \times 1 \times g = 10m \times 0 + M \times 2 \times g$ giving $M = 10m$	м1	Any clear attempt using original values	
	giving M - 10m	A1	or quoting c.m. Use of their values if c.m. quoted. All terms present. Accept mass used.	
		A1	cao	
		Tot 16		

(i)	Driving force F and resistance R			
	32000 = 25F giving $F = 1280$	М1	Use of $P = Fv$	
	also $F - R = 0$ so $R = 1280$ and resistance is 1280 N	A1	Need some reference to $F = R$	
	1280×100 = 128000 J	M1 F1	Use of WD = Fd	4
(ii)	Use of work-energy	М1	Must have KE term + WD by engine	
	$\frac{1}{2} \times 800v^2 - \frac{1}{2} \times 800 \times 25^2$	M1 A1	One correct KE term Both KE terms correct	
	= 45000×10	B1	Work done by engine	
	-340000	A1	All correct	
	hence $v = 30$	El		6
(iii)				
	either Use of work-energy	М1	Use of work-energy with KE and GPE	
	$\frac{1}{2} \times 800 \times 15^2 - \frac{1}{2} \times 800 \times 35^2$	M1 A1	Attempt at GPE Correct GPE including sign	
	$= -200 \times \frac{1}{14} \times 9.8 \times 800 - J$ J = 288 000 so 288 000 J	A1 F1	All signs correct	5
	or			
	uvast up the plane $15^2 = 35^2 + 2a \times 200$	M1	Use of appropriate uvast	
	so $a = -2.5$	A1	Accept sign not clearly defined	
	N2L up the plane			
	$-F - 800g \times \frac{1}{14} = 800 \times -2.5$	M1	Use of N2L with all forces present. Condone sign errors.	
	F = 1440	A1	_	
	WD is $1440 \times 200 = 288 \text{ kJ}$	F1	FT error in F .	
		Tot	¥ 1 1 144	
		15		

M2 Jan 03 Q4

(i)	Resolving down the plane			
	840 sin $\alpha \le F_{\text{max}}$ Perp to plane	B1	Accept = F	
	$R = 840 \cos \alpha$	BI		
	$F_{\text{max}} = \mu R$	M1	Allow for $F = \mu R$ used.	
	Hence $840 \sin \alpha \le 840 \mu \cos \alpha$		*	
	and $\mu \ge \tan \alpha = \frac{7}{24}$	El	Award only if inequality clearly established and value of tan demonstrated	4
	;=		[for $\mu = \tan \alpha$ WW, award SC1 with or without evaluation of tan]	
(ii)	Parallel P cos α	BI	Accept all forces resolved	
	Perp to plane downwards $P \sin \alpha$	B1	Accept all forces resolved	
	Moment c.w. is $2P\cos\alpha - 3P\sin\alpha$	MI	FT components and lengths	
	$= \frac{P}{25}(2 \times 24 - 3 \times 7) = \frac{27P}{25}$	E1	Clearly shown	4
(iii)	Must have P, weight through G (approx), F plane parallel and thro' base and R perp to plane thro' upper face	В1	All correct. Accept F and R combined at top edge	
	Moment of weight about AB is	M1	Attempt to find moment of weight about AB	
	c.w.			
	$-840\cos\alpha \times 1 - 840\sin\alpha \times 1 = \frac{-5208}{5}$ N m	A1		
	Sum of moments about AB is zero so	M1	Equating moments about AB. Dependent	
	$\frac{27P}{25} = \frac{5208}{5}$	A1	on previous M1	
	${25} = {5}$ and $P = 964.444$ so 964 (3 s. f.)	El		6
		Tot 14	13.14 (0.000)	
		14		