Groups Past Paper Question Pack

MEI FP3 2006

The group G consists of the 8 complex matrices $\{I, J, K, L, -I, -J, -K, -L\}$ under matrix multiplication, where

$$\mathbf{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \mathbf{J} = \begin{pmatrix} j & 0 \\ 0 & -j \end{pmatrix}, \quad \mathbf{K} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad \mathbf{L} = \begin{pmatrix} 0 & j \\ j & 0 \end{pmatrix}.$$

[6]

(i) Copy and complete the following composition table for G.

K $-\mathbf{L}$ I J K \mathbf{L} $-\mathbf{I}$ $-\mathbf{J}$ $-\mathbf{K}$ $-\mathbf{L}$ J J **−I** \mathbf{L} $-\mathbf{K}$ Ι $-\mathbf{L}$ K -JK K $-\mathbf{L}$ _I \mathbf{L} \mathbf{L} K $-\mathbf{I}$ $-\mathbf{I}$ -J $-\mathbf{J}$ $-\mathbf{J}$ Ι $-\mathbf{K}$ $-\mathbf{K}$ \mathbf{L} $-\mathbf{L}$ $-\mathbf{L}$ $-\mathbf{K}$

(Note that JK = L and KJ = -L.)

- (ii) State the inverse of each element of G. [3]
- (iii) Find the order of each element of G. [3]
- (iv) Explain why, if G has a subgroup of order 4, that subgroup must be cyclic. [4]
- (v) Find all the proper subgroups of G. [5]
- (vi) Show that G is not isomorphic to the group of symmetries of a square. [3]

(i) Prove that, for a group of order 10, every proper subgroup must be cyclic. [4]

The set $M = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ is a group under the binary operation of multiplication modulo 11.

(iii) List all the proper subgroups of M. [3]

The group P of symmetries of a regular pentagon consists of 10 transformations

$${A, B, C, D, E, F, G, H, I, J}$$

and the binary operation is composition of transformations. The composition table for P is given below.

	Α	В	С	D	E	F	G	Н	I	J
Α	C	J	G	Н	Α	В	I	F	E	D
В	F	E	Н	G	В	A	D	C	J	I
C	G	D	I	F	C	J	E	В	Α	Н
D	J	C	В	E	D	G	F	I	H	A
E	Α	В	C	D	E	F	G	Н	I	J
F	Н	I	D	C	F	E	J	A	В	G
G	I	Н	E	В	G	D	A	J	C	F
H	D	G	J	Α	Н	I	В	E	F	C
I	E	F	Α	J	I	Н	C	D	G	В
J	В	Α	F	I	J	C	Н	G	D	E

One of these transformations is the identity transformation, some are rotations and the rest are reflections.

(iv) Identify which transformation is the identity, which are rotations and which are reflections.

[4]

- (v) State, giving a reason, whether P is isomorphic to M. [2]
- (vi) Find the order of each element of P. [3]
- (vii) List all the proper subgroups of P. [4]

A binary operation * is defined on real numbers x and y by

$$x * y = 2xy + x + y.$$

You may assume that the operation * is commutative and associative.

(i) Explain briefly the meanings of the terms 'commutative' and 'associative'. [3]

(ii) Show that
$$x * y = 2(x + \frac{1}{2})(y + \frac{1}{2}) - \frac{1}{2}$$
. [1]

The set S consists of all real numbers greater than $-\frac{1}{2}$.

(iii) (A) Use the result in part (ii) to show that S is closed under the operation *.

(B) Show that
$$S$$
, with the operation $*$, is a group. [9]

[3]

[3]

(iv) Show that S contains no element of order 2.

The group $G = \{0, 1, 2, 4, 5, 6\}$ has binary operation \circ defined by

 $x \circ y$ is the remainder when x * y is divided by 7.

(v) Show that
$$4 \circ 6 = 2$$
. [2]

The composition table for G is as follows.

0	0	1	2	4	5	6
0	0	1	2	4 6 1 5 0 2	5	6
1	1	4	0	6	2	5
2	2	0	5	1	6	4
4	4	6	1	5	0	2
5	5	2	6	0	4	1
6	6	5	4	2	1	0

(vi) Find the order of each element of G.

(vii) List all the subgroups of
$$G$$
. [3]

The group $G = \{1, 2, 3, 4, 5, 6\}$ has multiplication modulo 7 as its operation. The group $H = \{1, 5, 7, 11, 13, 17\}$ has multiplication modulo 18 as its operation.

(i) Show that the groups
$$G$$
 and H are both cyclic. [4]

(ii) List all the proper subgroups of
$$G$$
. [3]

(iii) Specify an isomorphism between
$$G$$
 and H . [4]

The group $S = \{a, b, c, d, e, f\}$ consists of functions with domain $\{1, 2, 3\}$ given by

$$a(1) = 2$$
 $a(2) = 3$ $a(3) = 1$ $b(1) = 3$ $b(2) = 1$ $b(3) = 2$ $c(1) = 1$ $c(2) = 3$ $c(3) = 2$ $d(1) = 3$ $d(2) = 2$ $d(3) = 1$ $e(1) = 1$ $e(2) = 2$ $e(3) = 3$ $f(1) = 2$ $f(2) = 1$ $f(3) = 3$

and the group operation is composition of functions.

(iv) Show that
$$ad = c$$
 and find da. [4]

(vii) List all the proper subgroups of
$$S$$
. [4]

MEI FP3 2010 - Ignore parts (v) and (viii)

The group $F = \{p, q, r, s, t, u\}$ consists of the six functions defined by

$$p(x) = x$$
 $q(x) = 1 - x$ $r(x) = \frac{1}{x}$ $s(x) = \frac{x - 1}{x}$ $t(x) = \frac{x}{x - 1}$ $u(x) = \frac{1}{1 - x}$

the binary operation being composition of functions.

(i) Show that
$$st = r$$
 and find ts . [4]

[3]

(ii) Copy and complete the following composition table for F.

	p	q	r	S	t	u
p	p	q	r	S	t	u
\mathbf{q}	q	p	s	r	u	t
r	r	u	p	t	s	\mathbf{q}
s	S	t	q	u	r	p
t	t	s	u			
u	u	q q p u t s r	t			

(iii) Give the inverse of each element of F. [3]

(iv) List all the subgroups of
$$F$$
. [4]

The group M consists of $\left\{1, -1, e^{\frac{\pi}{3}j}, e^{-\frac{\pi}{3}j}, e^{\frac{2\pi}{3}j}, e^{\frac{2\pi}{3}j}\right\}$ with multiplication of complex numbers as its binary operation.

The group G consists of the positive integers between 1 and 18 inclusive, under multiplication modulo 19.

(vii) Explain why
$$G$$
 has no subgroup which is isomorphic to F . [1]

(viii) Find a subgroup of G which is isomorphic to M. [2]

MEI FP3 2011 - Ignore part (iii)

- (i) Show that the set $G = \{1, 3, 4, 5, 9\}$, under the binary operation of multiplication modulo 11, is a group. You may assume associativity. [6]
- (ii) Explain why any two groups of order 5 must be isomorphic to each other. [3]

The set $H = \left\{1, e^{\frac{2}{5}\pi j}, e^{\frac{4}{5}\pi j}, e^{\frac{6}{5}\pi j}, e^{\frac{8}{5}\pi j}\right\}$ is a group under the binary operation of multiplication of complex numbers.

(iii) Specify an isomorphism between the groups G and H.

The set K consists of the 25 ordered pairs (x, y), where x and y are elements of G. The set K is a group under the binary operation defined by

$$(x_1, y_1)(x_2, y_2) = (x_1x_2, y_1y_2)$$

where the multiplications are carried out modulo 11; for example, (3, 5)(4, 4) = (1, 9).

- (iv) Write down the identity element of K, and find the inverse of the element (9, 3). [2]
- (v) Explain why $(x, y)^5 = (1, 1)$ for every element (x, y) in K.
- (vi) Deduce that all the elements of K, except for one, have order 5. State which is the exceptional element. [3]
- (vii) A subgroup of K has order 5 and contains the element (9, 3). List the elements of this subgroup. [2]
- (viii) Determine how many subgroups of K there are with order 5. [2]

(i) Show that the set $P = \{1, 5, 7, 11\}$, under the binary operation of multiplication modulo 12, is a group. You may assume associativity. [4]

A group Q has identity element e. The result of applying the binary operation of Q to elements x and y is written xy, and the inverse of x is written x^{-1} .

(ii) Verify that the inverse of
$$xy$$
 is $y^{-1}x^{-1}$. [2]

Three elements a, b and c of Q all have order 2, and ab = c.

(iii) By considering the inverse of
$$c$$
, or otherwise, show that $ba = c$. [2]

(iv) Show that
$$bc = a$$
 and $ac = b$. Find cb and ca . [4]

(v) Complete the composition table for R = {e, a, b, c}. Hence show that R is a subgroup of Q and that R is isomorphic to P.
[4]

The group T of symmetries of a square contains four reflections A, B, C, D, the identity transformation E and three rotations F, G, H. The binary operation is composition of transformations. The composition table for T is given below.

	A	В	C	D	E	F	G	Н
A	E	G	H	F	A	D	В	C
В	G	\boldsymbol{E}	F	\boldsymbol{H}	\boldsymbol{B}	\boldsymbol{C}	A	D
C	F	H	\boldsymbol{E}	\boldsymbol{G}	\boldsymbol{C}	A	D	\boldsymbol{B}
D	H	F	\boldsymbol{G}	\boldsymbol{E}	D	\boldsymbol{B}	\boldsymbol{C}	A
\boldsymbol{E}	A	\boldsymbol{B}	\boldsymbol{C}	D	\boldsymbol{E}	F	\boldsymbol{G}	H
F	C	D	\boldsymbol{B}	A	F	\boldsymbol{G}	\boldsymbol{H}	\boldsymbol{E}
\boldsymbol{G}	В	A	D	\boldsymbol{C}	\boldsymbol{G}	H	\boldsymbol{E}	F
\boldsymbol{H}	D	\boldsymbol{C}	A	\boldsymbol{B}	\boldsymbol{H}	D C A B F G H	F	\boldsymbol{G}

(vi) Find the order of each element of T.

[3]

(vii) List all the proper subgroups of T.

[5]

(a) The composition table for a group G of order 8 is given below.

	a	b	с	d	e	f	g	h
a	С	e	b	f	а	h d g c f b a e	d	g
b	e	c	a	g	\boldsymbol{b}	d	h	f
c	b	a	e	h	c	g	f	d
d	f	g	h	a	d	c	e	\boldsymbol{b}
e	a	\boldsymbol{b}	c	d	е	f	g	h
f	h	d	g	C	f	\boldsymbol{b}	a	е
g	d	h	f	e	g	a	b	c
h	g	f	d	\boldsymbol{b}	h	e	C	a

- (i) State which is the identity element, and give the inverse of each element of G. [3]
- (ii) Show that G is cyclic. [4]
- (iii) Specify an isomorphism between G and the group H consisting of $\{0, 2, 4, 6, 8, 10, 12, 14\}$ under addition modulo 16.
- (iv) Show that G is not isomorphic to the group of symmetries of a square. [2]
- **(b)** The set S consists of the functions $f_n(x) = \frac{x}{1 + nx}$, for all integers n, and the binary operation is composition of functions.
 - (i) Show that $f_m f_n = f_{m+n}$. [2]
 - (ii) Hence show that the binary operation is associative. [2]
 - (iii) Prove that S is a group. [6]
 - (iv) Describe one subgroup of S which contains more than one element, but which is not the whole of S.[2]

The twelve distinct elements of an abelian multiplicative group G are

$$e, a, a^2, a^3, a^4, a^5, b, ab, a^2b, a^3b, a^4b, a^5b$$

where e is the identity element, $a^6 = e$ and $b^2 = e$.

- (i) Show that the element a^2b has order 6. [3]
- (ii) Show that $\{e, a^3, b, a^3b\}$ is a subgroup of G.
- (iii) List all the cyclic subgroups of G. [6]

You are given that the set

$$H = \{1, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 77, 79, 83, 89\}$$

with binary operation multiplication modulo 90 is a group.

- (iv) Determine the order of each of the elements 11, 17 and 19. [4]
- (v) Give a cyclic subgroup of H with order 4. [2]
- (vi) By identifying possible values for the elements a and b above, or otherwise, give one example of each of the following:
 - (A) a non-cyclic subgroup of H with order 12, [3]
 - (B) a non-cyclic subgroup of H with order 4. [3]

- (a) The elements of the set $P = \{1, 3, 9, 11\}$ are combined under the binary operation, *, defined as multiplication modulo 16.
 - (i) Demonstrate associativity for the elements 3, 9, 11 in that order.

Assuming associativity holds in general, show that P forms a group under the binary operation *.

[6]

(ii) Write down the order of each element.

[2]

(iii) Write down all subgroups of P.

[1] [1]

- (iv) Show that the group in part (i) is cyclic.
- (b) Now consider a group of order 4 containing the identity element e and the two distinct elements,

a and b, where $a^2 = b^2 = e$. Construct the composition table. Show that the group is non-cyclic.

(c) Now consider the four matrices I, X, Y and Z where

$$\mathbf{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \mathbf{X} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \mathbf{Y} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \mathbf{Z} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}.$$

The group G consists of the set {I, X, Y, Z} with binary operation matrix multiplication. Determine which of the groups in parts (a) and (b) is isomorphic to G, and specify the isomorphism. [6]

(d) The distinct elements $\{p, q, r, s\}$ are combined under the binary operation °. You are given that $p \circ q = r$ and $q \circ p = s$.

By reference to the group axioms, prove that $\{p, q, r, s\}$ is not a group under °. [4]