Groups Past Paper Question Pack 2

MEI P6 Jun 02

The set $G = \{1, 3, 7, 9, 11, 13, 17, 19\}$ is a group under the binary operation of multiplication modulo 20.

- (i) Give the combination table for G. [4]
- (ii) State the inverse of each element of G. [2]
- (iii) Find the order of each element of G. [2]
- (iv) List all the subgroups of G.

Identify those subgroups which are isomorphic to one another. [7]

- (v) For each of the following, state, giving reasons, whether or not the given set and binary operation is a group. If it is a group, state, giving a reason, whether or not it is isomorphic to G.
 - (A) $J = \{0, 1, 2, 3, 4, 5, 6, 7\}$ under multiplication modulo 8
 - (B) $K = \{0, 1, 2, 3, 4, 5, 6, 7\}$ under addition modulo 8 [5]

MEI P6 Jun 04

The set G consists of all real numbers not equal to 2.	
A binary operation * is defined on real numbers x , y by $x * y = xy - 2x - 2y + 6$.	
(i) Prove that G , with the binary operation $*$, is a group.	[9]
(ii) Find an element of G of order 2.	[2]
The set $H = \{3, 5, 9, 11\}$ has a binary operation \circ defined by	
$x \circ y$ is the remainder when $x * y$ is divided by 20.	
(iii) Give the combination table for H , and hence prove that H is a group.	[5]
(iv) Determine whether H is a cyclic group or not.	[2]
(v) Explain why H is not a subgroup of G .	[2]

MEI P6 Jun 05

An abelian group $G = \{a, b, c, d, e, f, g, h\}$ has the following composition table.

	a	b	c	d	e	f	g	h
а	b	c	e	f	a	g	h	d
b	c	e	a	g	b	h	d	f
c	c e	a	b	h	c	d	f	g
d	f	g	h	e	d	a	b	c
e	a	b	c	d	e	f	g	h
f	g	h	d	a	f	b	c	e
g	h	d	f	b	g	c	e	a
h	d	f	g	c	h	e	a	b

- (i) State the inverse of each element of G.
- (ii) Find the order of each element of G. [3]

[2]

(iii) List all the proper subgroups of G. [5]

OCR FP3 Jan 06

١.

The tables shown below are the operation tables for two isomorphic groups G and H.

\boldsymbol{G}	a	b	c	d	Н	2	4	6	8
a	d	а	b	c	2	4	8	2	6
	a				4	8	6	4	2
c	b	c	d	a	6	2	4	6	8
d	c	d	a	b	8	6	2	8	4

- (i) For each group, state the identity element and list the elements of any proper subgroups. [4]
- (ii) Establish the isomorphism between G and H by showing which elements correspond. [3]

2.

A group G has an element a with order n, so that $a^n = e$, where e is the identity. It is given that x is any element of G distinct from a and e.

- (i) Prove that the order of $x^{-1}ax$ is n, making it clear which group property is used at each stage of your proof. [6]
- (ii) Express the inverse of $x^{-1}ax$ in terms of some or all of x, x^{-1} , a and a^{-1} , showing sufficient working to justify your answer. [3]
- (iii) It is now given that a commutes with every element of G. Prove that a^{-1} also commutes with every element. [2]

OCR FP3 Jun 06

١.

- (a) For the infinite group of non-zero complex numbers under multiplication, state the identity element and the inverse of 1 + 2i, giving your answers in the form a + ib. [3]
- **(b)** For the group of matrices of the form $\begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}$ under matrix addition, where $a \in \mathbb{R}$, state the identity element and the inverse of $\begin{pmatrix} 3 & 0 \\ 0 & 0 \end{pmatrix}$.

2.

A group D of order 10 is generated by the elements a and r, with the properties $a^2 = e$, $r^5 = e$ and $r^4a = ar$, where e is the identity. Part of the operation table is shown below.

	e	а	r	r^2	r^3	r^4	ar	ar^2	ar^3	ar^4
e	e	a	r	r^2	r^3	r ⁴	ar	ar^2	ar^3	ar ⁴
а	a	e	ar	ar^2	ar^3	ar ⁴	! ! L			
r	r		r^2	r ³	r^4	e				
r^2	r^2		r^3	r^4	e	r				
r^3	r ³		r ⁴	e	r	r^2				
r^4	r^4	ar	e	r	r^2	r^3				
ar	ar		ar^2	ar^3	ar^4	а	 			
ar^2	ar ²		ar ³	ar^4	a	ar	!	1	7	
ar^3	ar ³		ar4	a	ar	ar^2	,		<u>`</u>	
ar^4	ar4		a	ar	ar^2	ar^3				

- (i) Give a reason why D is not commutative. [1]
- (ii) Write down the orders of any possible proper subgroups of D. [2]
- (iii) List the elements of a proper subgroup which contains

(a) the element
$$a$$
, [1]

(b) the element
$$r$$
. [1]

- (iv) Determine the order of each of the elements r^3 , ar and ar^2 . [4]
- (v) Copy and complete the section of the table marked E, showing the products of the elements ar, ar^2 , ar^3 and ar^4 . [5]

OCR FP3 Jan 07

١.

- (i) Show that the set of numbers {3, 5, 7}, under multiplication modulo 8, does not form a group.[2]
- (ii) The set of numbers {3, 5, 7, a}, under multiplication modulo 8, forms a group. Write down the value of a.
 [1]
- (iii) State, justifying your answer, whether or not the group in part (ii) is isomorphic to the multiplicative group $\{e, r, r^2, r^3\}$, where e is the identity and $r^4 = e$. [2]

2.

A multiplicative group G of order 9 has distinct elements p and q, both of which have order 3. The group is commutative, the identity element is e, and it is given that $q \neq p^2$.

- (i) Write down the elements of a proper subgroup of G
 - (a) which does not contain q, [1]
 - **(b)** which does not contain p. [1]
- (ii) Find the order of each of the elements pq and pq^2 , justifying your answers. [3]
- (iii) State the possible order(s) of proper subgroups of G. [1]
- (iv) Find two proper subgroups of G which are distinct from those in part (i), simplifying the elements.[4]

١.

Elements of the set $\{p, q, r, s, t\}$ are combined according to the operation table shown below.

	p	q	r	s	t
p	p t s p r q	s	p	r	\boldsymbol{q}
\boldsymbol{q}	s	p	\boldsymbol{q}	t	r
r	p	\boldsymbol{q}	r	s	t
s	r	t	s	\boldsymbol{q}	p
t	q	r	t	p	s

- (i) Verify that q(st) = (qs)t. [2]
- (ii) Assuming that the associative property holds for all elements, prove that the set $\{p, q, r, s, t\}$, with the operation table shown, forms a group G. [4]
- (iii) A multiplicative group H is isomorphic to the group G. The identity element of H is e and another element is d. Write down the elements of H in terms of e and d. [2]

2.

The set S consists of the numbers 3^n , where $n \in \mathbb{Z}$. (\mathbb{Z} denotes the set of integers $\{0, \pm 1, \pm 2, \dots \}$.)

- (i) Prove that the elements of S, under multiplication, form a commutative group G. (You may assume that **addition** of integers is associative and commutative.) [6]
- (ii) Determine whether or not each of the following subsets of S, under multiplication, forms a subgroup of G, justifying your answers.

(a) The numbers
$$3^{2n}$$
, where $n \in \mathbb{Z}$. [2]

(b) The numbers
$$3^n$$
, where $n \in \mathbb{Z}$ and $n \ge 0$. [2]

(c) The numbers
$$3^{(\pm n^2)}$$
, where $n \in \mathbb{Z}$. [2]

١.

(a) A group G of order 6 has the combination table shown below.

	e	a	b	p	\boldsymbol{q}	r
e	e a b p q	a	b	p	q	r
a	a	b	e	r	p	\boldsymbol{q}
b	b	e	a	q	r	p
p	p	q	r	e	a	\boldsymbol{b}
q	q	r	p	b	e	a
r	r	p	q	a	b	e

- (i) State, with a reason, whether or not G is commutative. [1]
- (ii) State the number of subgroups of G which are of order 2. [1]
- (iii) List the elements of the subgroup of G which is of order 3. [1]
- (b) A multiplicative group H of order 6 has elements e, c, c^2 , c^3 , c^4 , c^5 , where e is the identity. Write down the order of each of the elements c^3 , c^4 and c^5 . [3]

2.

Groups A, B, C and D are defined as follows:

A: the set of numbers {2, 4, 6, 8} under multiplication modulo 10,

B: the set of numbers {1, 5, 7, 11} under multiplication modulo 12,

C: the set of numbers {2⁰, 2¹, 2², 2³} under multiplication modulo 15,

D: the set of numbers $\left\{\frac{1+2m}{1+2n}\right\}$, where m and n are integers under multiplication.

- (i) Write down the identity element for each of groups A, B, C and D. [2]
- (ii) Determine in each case whether the groups

A and B,

B and C.

A and C

are isomorphic or non-isomorphic. Give sufficient reasons for your answers. [5]

[4]

(iii) Prove the closure property for group D.

(iv) Elements of the set $\left\{\frac{1+2m}{1+2n}\right\}$, where m and n are integers are combined under addition. State which of the four basic group properties are not satisfied. (Justification is not required.) [2]

OCR FP3 Jun 08

١.

- (a) A cyclic multiplicative group G has order 12. The identity element of G is e and another element is r, with order 12.
 - (i) Write down, in terms of e and r, the elements of the subgroup of G which is of order 4. [2]
 - (ii) Explain briefly why there is no proper subgroup of G in which two of the elements are e and r.
 [1]
- (b) A group H has order mnp, where m, n and p are prime. State the possible orders of proper subgroups of H. [2]

2.

The operation \circ on real numbers is defined by $a \circ b = a|b|$.

- (i) Show that ∘ is not commutative. [2]
- (ii) Prove that ∘ is associative. [4]
- (iii) Determine whether the set of real numbers, under the operation o, forms a group. [4]