Groups Past Paper Question Pack 2 — Mark Schemes
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5(i) 3 )
1 3 7 9 11 13 17 19
l i 37 91 1I¥ 17 19
313 9 1 7 13 19 11 17
717 1 9 3 17 11 19 13
B4 Give B1 for 16 entries correct
) I 119 17 131 B2 for 32 entries correct
i 13 17 19 1 7 9 B3 for 48 entries correct
13113 19 11 17 3 9 1 7 4
171127 11 19 13 7 1 9 3
19119 17 13 11 9 7 3 1
(ii)
x|lv 3 7 13 17 19
<!y 7 3 11 17 13 19 B2 Give B1 for 4 correct
2
(i)
x|1 3 7 9 11 13 17 19
orderl 1 4 4 2 2 4 4 2 |p Give B1 for 4 correct
2
Gv) | {1}, {1.9}, f.a}, {119} B2 Give B1 for 2 correct
{1.3.7.9}, {1'9.13' l7}. {l,9,|l,!9}, G B2 Give Bl for2oonecl(Gnoueqmrd)
{1.9}, (1.1}, {1,19} are isomorphic Bl For any two subgroups of order 2
{1,3,7.9}, {1,9,13,17} are isomorphic Bl
Bl Fully correct, dependent on all
7| subgroups of orders 2 and 4 correctly
listed, and no spurious IMs given
(vXA4) | O has no inverse Bl For reason
so.J is not a group Bl
(B) |Kis closed and inverses of 0, 1, 2, 3, 4, §, 6, 7
are 0, 7, 6, 5, 4, 3, 2, | BIi For reason
so K is a group Bl
Different pattern (2 self-inverse)
K is not isomorphic to G Bl Must include a reason
5
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51(i) Gisclosedif x*y=2 M1
x*y=2 = (x-2y-2)=0
As x#2 and y#=2, wehave x+yp=2 Al
(x*y)ez=(xy—-2x—2y+6)*z M1 MO if only particular example(s) given
=(xp—2x-2y+6)z—-2xy-2x-2y+6)-2=+6
=xyz—2xz—2yr—2xy+dx+dy+ 4z -6 Al
x*(y*z)
=x({yz—-2y—-2z4+6)-2x-2(yz-2y-2z+6)+6
=xz—2xy—-2xz-2yz+dx+ 4y +4z-6 Al
Hence (7 1s associative
The identity element is 3 Bl
(since 3#x=3x—6-2x+6=x)
Ir—
xry=3 o yo 23 MIAL
- x-2
. 2x-3 ..
Since x# 2 and > # 2, every element of (7 has
¥ —
an inverse in (7 Al
9
(i) |ysr=3 o x" —dx+6=3 M1
= x=1, 3
The only element with order 2 is 1 Al
2
(iii) 3 5 9 11
3 3 5 9 11
5 3 1 3 9 B2 Give Bl for one bold value correct
9 9 3 11 5
11 11 9 5 3
Table shows 15 closed
o 15 associative since * 1s associative
The identity element is 3 Bl For any two of these statements
3,59, 11 have inverses 3,9, 5, 11 B2 Give Bl for two correct
5
(iv) |H 1s cyclic since it has an element of order 4 M1
The clement 5 (or 9) has order 4 Al
2
(v) | is not asubgroup of (7 since the binary operation 1s
different; M1
cgmis, 5#+9=23:butm H, 59=3 Al
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S(H}ﬁ Element a b ¢ d e f g

h .
B2 Give Bl for five correct
) Inverse ¢ b a d € h g f 2
Element a & ¢ d ¢ f h
(ii) Order 4 2 4 2 1 4 2 4 B3 Give B2 for six correct
3 B1 for three correct
le. b}, le.d). e, g B2 Give Bl for two correct
s \
(iii) :e. a, b, ¢} B1
L€ I’J, f, ff } B]_
le. b, d, g! If more than 6 subgroups given,

Bl deduct Bl from total for each in
S|excess of 6
( but ignore {e} and G )
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l.

(i) 1dentities b, 6 Bl Bl | For correct identities
Subgroups {b, d}, {6, 4} B1 BI | For correct subgroups
L 4
(ii) {a, b. c, d} «» {2, 6,8,4} or {8,6,2,4} | Bl Bl |For be>6, d e 4
Bl 3 | For a,c < 2,8 in either order
SR If BO B0 BO then M1 Al may be awarded
for stating the orders of all elements in G and
H
2.
() clax)” =(xtax)xax)(x7Tax) | MA For considering powers of x 'ax
=x"laa...ax, associativity, xx' =e | A1 A1 | For using associativity and inverse
properties
=x'a"x=x"lexwhenm=n, B1 For using order of a correctly
notm«<n
=x"x A1 For using property of identity
=¢ = ordern A1 6 | Forcorrectconclusion
(H)EITHER (x 'ax)z=e¢ M1 For attempt to solve for z AEF
Sazr=ye=x = x=a'x Al For using pre- or post multiplication
_ oz=xlalx Al For correct answer
OR Use =g lp!
(WL ?1 'I_JI a M1 For applying inverse of a product of
OR(pgr)" =r"q" p elements
State (x ') ' =x A1 For stating this property
Obtain x a7 'x A1 3 | For correct answer with no incorrect
working
SR correct answer with no working
B : . | scores B1 only B
(iil) x=xa = x=a'xa M1 Start from commutative property for ax
=xal=alx A1 2 | Obtain commutative property for a '
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l.

(a) Identity=1+01 Bl For correct identity. Allow 1
Inverse = ; Bl For - seen or implied
1+21 1+2i
S ® — =L1l_2j Bl 3 | Forcorrect inverse AEFcartesian
1+21 1-21 3 3
(b) Identity = [g EJ Bl For correct identity
-3 0 WS R——
Inverse = Bl 2 | For correct inverse
00
2.
(i) raza. vt Bl 1 | For stating the non-commutative product in the
v | given table, or justifying another correct one
(i) Possible subgroups order 2, 5 Bl For either order stated
Bl 2 | For both orders stated. and no more_(Ignore 1)
(iii) (a) |e, a} Bl For correct subgroup
(b) je.r, ror et Bl 2 | For correct subgroup
{iv) order of =5 Bl For correct order
(ar)’ =arar=ra.ar=e¢ M1 For attempt to find (ar)™ =e OR (ar”)" =&
= order of ar=2 Al For correct order
{arz ‘]2 —arfarr=arrtar=arar=e
= order of ar® =2 Al 4 | For correct order
(v) If the border elements ar ar” ar’ ar® are not
ar ar* ar’ ar' written, 1t will be assumed that the products anse
ar |l e r #E 3 from that order
| £ -] e = m
allt e r A Bl For all 16 LlLITJLI'lL!? of L]'IL. furn:? eor r
N I Bl For all 4 elements in leading diagonal = e
a r? r € r Bl For no repeated elements in any completed row or
ar* | Pt e column
Bl For any two rows or columns correct
Bl 5§ | For all elements correct
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l.

(i) Attempt to show no closure M1 For showing operation table or otherwise
3x3=1, 5x5=1 OR T=x7=1 Al For a convincing reason
OR Attempt to show no identity M1 | For attempt to find identity OR for showing operation
table
Show a=e=a has no solution Al 2 | For showing identity 1s not 3, not 5, and not 7
____________ by reference to operation table or otherwise
(ii)ia=)1 Bl 1 | For value of a stated
Gii) £ITHER: | ]
te, v, r*}is cyclic, (ii) group is not cyclic | B1* For a pair of correct statements
OR: {e,r,r”, " has 2 self-inverse elements, )
(i} group has 4 self-inverse elements BI* For a pair of comrect statements
OR: le,r,r, r thas | element of order 2 o
(ii) group has 3 elements of order 2 Bl* _____ For a pair of correct statcments
OR: {e,r,r”, r has element(s) of order 4 oo
(i) group has no element of order 4 El“' ______ For a pair of correct statements
Not 1somorphic Bl For correct conclusion
(dep*)
2

2.
(i) (a) e, p. p° Bl For correct elements
(b)e.q.q° B1 2 | For correct elements
SR If the answers to parts (i) and (iv) are reversed, full
____________ credit may be earned for both parts
(i)p’=q" =e=(pgy =p'q =e M1 For finding (pg)*or (pg”)’
= order 3 Al For correct order
(pg’y = pig® = plig’ ) =e = order 3 Al 3 | For correct order
SR For answer(s) only allow B1 for either or both
(iii) 3 Ell For correct order and no others
(iv) Bl For stating e and either pg or p°q~
£, pyg, pzqz R e, pq,{pq]z Bl For all 3 elements and no more
Bl For stating e and either pg~ or p’q
2 2 2 2.2
e, pg . p g OR e pg . (pg”) Bl 4 | Forall 3 elements and no more
OR e, p°q,(p'q)
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l.

(i) glst)=gp=s Bl For obtaining s
(gsit=tt=35 Bl 2 | Forobtaining s
(ii) METHOD 1
Closed: see table Bl For stating closure with reason
Identity = r Bl For stating identity r
Inverses: p_l =3, q_l =t r=r I M1 For checking for inverses
L p. Fhe q Al 4 | For 5tati1.1g inw_:rxc?;tﬂﬂ For giving sufﬁcic:.nt
explanation to justify each element has an inverse
eg r oceurs once n each row and/or column

(iii) e d d°,d.d"

B2 2 | Forstating all elements AEF eg 47", d=2, dd

2.
9 (i) 3= 3"=3"" nimeZ Bl For showing closure
{3p w39 }x 3 (3p+q } w3 = 3P M1 For considenng 3 distinct elements,
seen bracketed 2+1 or 1+2
=3P x [3‘?"'} =3 x {3“' % 3r] = associativity Al For correct justification of associativity
Identity is 3" Bl For stating identity. Allow 1
Inverse is 37" Bl For stating inverse
3 3T =3 TR 3% 3 = commutativity Bl 6 | Forshowing commutativity
(ii) (a) 3, qim _ qln+lm (= 32("‘”‘”} B1* For showing closure
Identity, inverse OK Bl For stating other two properties satisfied
(*dep) and hence a subgroup
2
(b) For 37", M1 For considering inverse
—n g subset Al 2 | Forjustification of not being a subgroup
37" must be seen here or in (i)
(¢) EITHER: eg FLE S M1 For attempting to find a specific counter-example of
closure
- 3’”3 = not a subgroup Al 2 | Foracorrect counter-example and statement that it
15 not a subgroup
OR: 3" = 3™ =37+ M1 For considenng closure in general
- 3r3 ez 2225 = nota subgroup Al For cxp]aining_\-.ihy n® +m” #r* in general and
statement that it 15 not a subgroup




OCR FP3 Jan 08
l.

(a) (i) ecg ap= pa = not commutative Bl For correct reason and conclusion
(i) 3 El For correct number
(iii) e, a. b Bl For correct elements
b} ¢ has order 2 Bl For correct order
¢* has order 3 Bl For correct order
¢ has order 6 Bl For correct order




(i) Group 4: =06

Group B: e=1 Bl For any two correct identities
Group C: e= 2Y or1 Bl For two other correct identities
Group D: e=1 2 | AEFfor D, butnot“m=n"
(ii) EITHER OR
A2 4 6 B
2|4 8 2 6 orders of elements
418 6 4 2 12,4, 4
6|12 4 6 B OR cyclie group
Bl6 2 B 4
Bl s 7 1 orders of elements
I|ir s 7 11 1222
515 1 11 7 S
OR non-cyclic group
77 OR Klein group
Iy 7 5 1
c 2" 2 ¥ ¥ For showing group table
2 12% 2Y 27 2} srders of elements OR sufficient details of orders of elements
gl 9l 22 43 0 1,2.4 4 OR stating nf:}rclic { non-cyclic / Klein group
2222 93 40 ol OR cyche group (as appropriate)
2|93 50 51 52 Bl* for one ufg,n{ups A BC
B1* for another of groups 4, 8, C
Az B Bl For stating non-1somorphic
{dep*) with sufficient detail
Bz(C Bl For stating non-isomorphic
(dep*) relating to the first 2 mark:
A=C Bl For stating isomorphic
{dep*®)
5
. 142m 142p 1+2m+2p+4mp MI* For considering product of 2 distinet elements of this
(i) = = form
1+2n 1+2g 1+2n+2g+4ng o
M1 For multiplying out
{dep*®)
1+2(m+ p+2mp) 1+2r Al For simplifying to form shown
" 2ntgiing) =115 Al 4 | Foridentifying as correct form, so closed
SR ﬂxﬂ _odd eamns full credit
odd odd odd
SR If clearly attempting to prove commutativity, allow
at most M1
{iv) Closure not satisfied Bl For stating closure
Identity and inverse not satisfied Bl 2 | Forstating identity and inverse

SR If associativity 1s stated as not satisfied, then award
at most Bl B0 OR B0 B1
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l.
(a)i) e’ M1 For stating ¢, ¥ (anym .. 2 ), and 2 other different
elements in terms of ¢ and r
M2 Forallelementscorrect
(i)  rgenerates GG Bl 1  For this or any statement equivalent to:
all elements of G are included in a group with ¢ and r
et e et ame e et emm e emnnn s mnn s mmenmemnnnnn - O OT0CE Of 7> order of all possible proper subgroups
(by  m, n p mn np, pm Bl For any 3 orders correct
Bl 2  For all 6 correct and no extras (Ignore 1 and map)
2.
)  When a, b have opposite signs, MI For considering sign of a|b| OR !Jlal
in general or in a specific case
a|.’;|=iab, ﬁ|a|=¥ba = a|.’1|a&b|a| Al 2  Forshowing that a|.’;|a&.’;l|a|
Note that |I| = ‘\.IIJL'2 may be used
TGy T T T ML For using 3 distinet elements and simplifying
(aob)oc=(alp)oc =alb||c| OR albe| (@eb)oc OR as(boc)
Al For obtaining correct answer
aol[.’;uc)=ao{b|c'|}|=a|b|c||=a|b||c| ORr albcl M1 For simplbhfymg the other bracketed expression
eememt 11 san s snaar e o eRER S Emes s saRe s 1 snune 0 ennsoe nmeeit hareaacr UL OOUHNING the SAMME ANSWET ... ceereencreereraaennss
(iii) Bl1* For stating ¢ =1 OR no identity
EITHER ace=alel=a = e=*l Ml For attempting algebraic justification of +1 and -1 for
€
OR esa=ela|=a Al For deduc: (unique) identi
or deducing no (unique) identity
= eg=lfora=0, e=—lfora<0 £ 4 .
Not a group Bl For stating not a group
i *dep)
4



