Groups Past Paper Question Pack 2 - Mark Schemes

MEI P6 Jun 02

5 (i)													
		1	3	7	9	11	13	17	19				
	1	1	3	7	9	11	13	17	19			100	
	3	3	9	1	7	13	19	11	17				
	7	7	1	9	3	17	11	19	13	B4		Give B1 for 16 entries correct	
	9	9	7	3	1	19	17	13	11			B2 for 32 entries correct	
	11	11	13	17	19	1	3	7	9			B3 for 48 entries correct	
	13	13	19	11	17	3	9	1	7		4		
	17	17	11	19	13	7	1	9	3	-			
	19	19	17	13	11	9	7	3	1				
(ii)	<u> </u>	_			-	_	_		-	1	-		
	x	ı	3	7	9	11	13	17	19				
	x ⁻¹	1	7	3	9	11	17	13	19	В2	2	Give B1 for 4 correct	
(iii)		_				11.00				-			
	x	1	3	7	9	11	13	17	19				
	order	1	4	4	2	2	4	4	2	В2	2	Give B1 for 4 correct	
(iv)							11,19), (;	B2 B2		Give B1 for 2 correct Give B1 for 2 correct (G not required)	
	{1,3,7,9}, {1,9,13,17}, {1,9,11,19}, G {1,9}, {1,11}, {1,19} are isomorphic {1,3,7,9}, {1,9,13,17} are isomorphic								B1 B1 B1	7	For any two subgroups of order 2 Fully correct, dependent on all subgroups of orders 2 and 4 correctly listed, and no spurious IMs given		
(v)(A)	0 has no in so J is not									BI BI		For reason	
(B)	K is closed so K is a g						3, 4			B1 B1		For reason	
	Different p K is not is				iverse	e)				Ві	5	Must include a reason	

MEI P6 Jun 04

5 (i)	G is closed if						Ml		
	$x * y = 2 \implies$ As $x \neq 2$ and				* y ≠ 2	2	A1		
	(x * y) * z = $= (xy - 2x -$					+6)-27+6	M1		M0 if only particular example(s) given
	= (xy - 2x - 2xz						A1		
	x * (y * z) $= x(yz - 2y - 2xy -$,	100			Al		
	Hence G is as								
	The identity of (since 3			-2x + 6	5 = x)	В1		
	$x * y = 3 \Leftrightarrow$	-					MlAl		
	Since $x \neq 2$	and $\frac{2x}{x}$	$\frac{x-3}{-2}\neq$	2, evei	ry elei	nent of G has			
	an inverse in	G					Al	9	
(ii)	$x * x = 3 \Leftrightarrow$: 3			Ml		
	The only eler	x = 1, nent wi		er 2 is	1		A1	2	
(iii)		3	5	9	11	_			
	3	3	5	9	11				
	5	5	11	3	9		B2		Give B1 for one bold value correct
	9	9	3	11 5	5				
	Table shows <i>H</i> is closed o is associative since * is associative The identity element is 3						Bl		For any two of these statements
									Give B1 for two correct
	3, 5, 9, 11 have inverses 3, 9, 5, 11							5	Give B1 for two correct
(iv)	H is cyclic since it has an element of order 4 The element 5 (or 9) has order 4							2	
(v)	H is not a sub different; e.g. in G, 5 *	٠.				y operation is	M1 A1	2	

MEI P6 Jun 05

5(a)(i	Element a b c d e f g h Inverse c b a d e h g f	B2 Give B1 for five correct
(ii)	Element a b c d e f g h Order 4 2 4 2 1 4 2 4	B3 Give B2 for six correct B1 for three correct
(iii)	{e, b}, {e, d}, {e, g} {e, a, b, c} {e, b, f, h} {e, b, d, g}	B2 B1 B1 B1 If more than 6 subgroups given, deduct B1 from total for each in excess of 6 (but ignore {e} and G)

I.

(i) Identities b, 6 Subgroups {b, d}, {6, 4}	1	For correct identities For correct subgroups
(ii) $\{a, b, c, d\} \leftrightarrow \{2, 6, 8, 4\}$ or $\{8, 6, 2, 4\}$	B1 B1 B1 3	For $b \leftrightarrow 6$, $d \leftrightarrow 4$ For $a, c \leftrightarrow 2$, 8 in either order SR If B0 B0 B0 then M1 A1 may be awarded for stating the orders of all elements in G and H

(i) $(x^{-1}ax)^m = (x^{-1}ax)(x^{-1}ax)(x^{-1}ax)$	М1	For considering powers of $x^{-1}ax$
		1
$= x^{-1}aaax$, associativity, $xx^{-1} = e$	A1 A1	For using associativity and inverse properties
$= x^{-1}a^m x = x^{-1}ex$ when $m = n$,	B1	For using order of a correctly
not m < n		
$=x^{-1}x$	A1	For using property of identity
$=e \implies \text{order } n$	A1 6	For correct conclusion
(ii) EITHER $(x^{-1}ax)z = e$	M1	For attempt to solve for z AEF
$\Rightarrow axz = xe = x \Rightarrow xz = a^{-1}x$	A1	For using pre- or post multiplication
$\Rightarrow z = x^{-1}a^{-1}x$	A1	For correct answer
OR Use $(pq)^{-1} = q^{-1}p^{-1}$		
$OR(pqr)^{-1} = r^{-1}q^{-1}p^{-1}$	M1	For applying inverse of a product of elements
State $(x^{-1})^{-1} = x$	A1	For stating this property
Obtain $x^{-1}a^{-1}x$	A1 3	For correct answer with no incorrect working SR correct answer with no working scores B1 only
(iii) $ax = xa \implies x = a^{-1}x a$	M1	Start from commutative property for ax
$\Rightarrow xa^{-1} = a^{-1}x$	A1 2	Obtain commutative property for $a^{-1}x$

OCR FP3 Jun 06

١.

(a)	Identity = 1+0i	Bl		For correct identity. Allow 1
	$Inverse = \frac{1}{1+2i}$	В1		For $\frac{1}{1+2i}$ seen or implied
	$= \frac{1}{1+2i} \times \frac{1-2i}{1-2i} = \frac{1}{5} - \frac{2}{5}i$	В1	3	For correct inverse AEFcartesian
(b)	$Identity = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$	В1		For correct identity
	Inverse = $ \begin{pmatrix} -3 & 0 \\ 0 & 0 \end{pmatrix} $	В1	2	For correct inverse
		5	5	

_ .		
(i) $r^4 . a \neq a . r^4$	Bl 1	For stating the non-commutative product in the given table, or justifying another correct one
(ii) Possible subgroups order 2, 5	B1 B1 2	For either order stated For both orders stated, and no more (Ignore 1)
(iii) (a) {e, a}	B1	For correct subgroup
(b) $\{e, r, r^2, r^3, r^4\}$	B1 2	For correct subgroup
(iv) order of $r^3 = 5$	B1	For correct order
$(ar)^2 = ar.ar = r^4 a.ar = e$	M1	For attempt to find $(ar)^m = e \ OR \ (ar^2)^m = e$
\Rightarrow order of $ar = 2$	Al	For correct order
$(ar^2)^2 = ar^2 ar. r = ar^2 r^4 a. r = ara. r = e$		
\Rightarrow order of $ar^2 = 2$	A1 4	For correct order
(v) $\frac{ ar ar^2 ar^3 ar^4}{ar e r r^2 r^3}$		If the border elements $ar ar^2 ar^3 ar^4$ are not written, it will be assumed that the products arise from that order
$ \begin{array}{c cccccccccccccccccccccccccccccccc$	B1 B1 B1	For all 16 elements of the form e or r^m For all 4 elements in leading diagonal = e For no repeated elements in any completed row or column
	Bl 5	For any two rows or columns correct
	B1 5	For all elements correct

OCR FP3 Jan 07

I.

(i) Attempt to show no closure $3 \times 3 = 1$, $5 \times 5 = 1$ OR $7 \times 7 = 1$	M1		For showing operation table or otherwise
OR Attempt to show no identity	A1 M1		For a convincing reason For attempt to find identity <i>OR</i> for showing operation
Show $a \times e = a$ has no solution			table For showing identity is not 3, not 5, and not 7 by reference to operation table or otherwise
(ii) $(a =) 1$	B1	1	For value of a stated
(iii) EITHER: $\{e, r, r^2, r^3\}$ is cyclic, (ii) group is not cyclic	B1*		For a pair of correct statements
OR : {e, r, r^2 , r^3 } has 2 self-inverse elements, (ii) group has 4 self-inverse elements	B1*		For a pair of correct statements
OR: $\{e, r, r^2, r^3\}$ has 1 element of order 2 (ii) group has 3 elements of order 2	B1*		For a pair of correct statements
OR: $\{e, r, r^2, r^3\}$ has element(s) of order 4 (ii) group has no element of order 4	B1*		For a pair of correct statements
Not isomorphic	B1 (dep	*)	For correct conclusion
	5	2	

(i) (a) e, p, p ²	В1		For correct elements
(b) e, q, q^2	В1	2	For correct elements
			SR If the answers to parts (i) and (iv) are reversed, full credit may be earned for both parts
(ii) $p^3 = q^3 = e \Rightarrow (pq)^3 = p^3 q^3 = e$	M1		For finding $(pq)^3$ or $(pq^2)^3$
\Rightarrow order 3	A1		For correct order
$(pq^2)^3 = p^3q^6 = p^3(q^3)^2 = e \Rightarrow \text{order } 3$	A1	3	For correct order
			SR For answer(s) only allow B1 for either or both
(iii) 3	B1	1	For correct order and no others
(iv)	B1		For stating e and either pq or p^2q^2
$e, pq, p^2q^2 OR e, pq, (pq)^2$	В1		For all 3 elements and no more
	В1		For stating e and either pq^2 or p^2q
$e, pq^2, p^2q \ OR \ e, pq^2, (pq^2)^2$ $OR \ e, p^2q, (p^2q)^2$	Bl	4	For all 3 elements and no more
		_	I

OCR FP3 Jun 07

١.

(i) $q(st) = qp = s$	B1		For obtaining s
(qs)t = tt = s	B1	2	For obtaining s
(ii) METHOD 1			
Closed: see table	B1		For stating closure with reason
Identity = r	B1		For stating identity r
Inverses: $p^{-1} = s$, $q^{-1} = t$, $(r^{-1} = r)$,	M1		For checking for inverses
Inverses: $p^{-1} = s$, $q^{-1} = t$, $(r^{-1} = r)$, $s^{-1} = p$, $t^{-1} = q$	A 1	4	For stating inverses <i>OR</i> For giving sufficient explanation to justify each element has an inverse eg <i>r</i> occurs once in each row and/or column
(iii) e, d, d^2, d^3, d^4	B2	2	For stating all elements AEF eg d^{-1} , d^{-2} , dd

		1
9 (i) $3^n \times 3^m = 3^{n+m}, n+m \in \mathbb{Z}$	B1	For showing closure
$(3^p \times 3^q) \times 3^r = (3^{p+q}) \times 3^r = 3^{p+q+r}$	Ml	For considering 3 distinct elements, seen bracketed 2+1 or 1+2
$=3^{p} \times (3^{q+r}) = 3^{p} \times (3^{q} \times 3^{r}) \Rightarrow \text{associativity}$	A1	For correct justification of associativity
Identity is 30	B1	For stating identity. Allow 1
Inverse is 3^{-n}	B1	For stating inverse
$3^n \times 3^m = 3^{n+m} = 3^{m+n} = 3^m \times 3^n \Rightarrow \text{commutativity}$	B1 6	For showing commutativity
(ii) (a) $3^{2n} \times 3^{2m} = 3^{2n+2m} \left(= 3^{2(n+m)} \right)$	B1*	For showing closure
Identity, inverse OK	B1 (*dep) 2	For stating other two properties satisfied and hence a subgroup
(b) For 3^{-n} ,	M1	For considering inverse
-n ∉ subset	A1 2	For justification of not being a subgroup
		3 ⁻ⁿ must be seen here or in (i)
(c) EITHER: eg $3^{1^2} \times 3^{2^2} = 3^5$	Ml	For attempting to find a specific counter-example of closure
$\neq 3^{r^2} \Rightarrow \text{ not a subgroup}$	A1 2	For a correct counter-example and statement that it is not a subgroup
$OR: 3^{n^2} \times 3^{m^2} = 3^{n^2 + m^2}$	M1	For considering closure in general
$\neq 3^{r^2}$ eg $1^2 + 2^2 = 5$ \Rightarrow not a subgroup	A1	For explaining why $n^2 + m^2 \neq r^2$ in general and statement that it is not a subgroup
	12	

OCR FP3 Jan 08

I.

(a) (i) e.g. $ap \neq pa \Rightarrow$ not commutative	B1 1	For correct reason and conclusion
(ii) 3	B1 1	For correct number
(iii) e, a, b	B1 1	For correct elements
(b) c^3 has order 2	Bl	For correct order
c ⁴ has order 3	B1	For correct order
c ⁵ has order 6	B1 3	For correct order
	6	

(i) Group A : $e = 6$ Group B : $e = 1$ Group C : $e = 2^0$ OR 1 Group D : $e = 1$ (ii) EITHER OR $A \mid 2 \mid 4 \mid 6 \mid 8$ $2 \mid 4 \mid 8 \mid 2 \mid 6$ orders of elements $4 \mid 8 \mid 6 \mid 4 \mid 2$ 1, 2, 4, 4	Bl Bl 2	For any two correct identities For two other correct identities AEF for D , but not " $m = n$ "
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
5 5 1 11 7 OR non-cyclic group 7 7 11 1 5 OR Klein group		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1* B1*	For showing group table OR sufficient details of orders of elements OR stating cyclic / non-cyclic / Klein group (as appropriate) for one of groups A, B, C for another of groups A, B, C
$A \not\equiv B$ $B \not\equiv C$ $A \cong C$	B1 (dep*) B1 (dep*) B1 (dep*) 5	For stating non-isomorphic For stating non-isomorphic For stating isomorphic For stating isomorphic
(iii) $\frac{1+2m}{1+2n} \times \frac{1+2p}{1+2q} = \frac{1+2m+2p+4mp}{1+2n+2q+4nq}$ $1+2(m+p+2mp) 1+2r$	M1* M1 (dep*) A1	For considering product of 2 distinct elements of this form For multiplying out For simplifying to form shown
$= \frac{1+2(m+p+2mp)}{1+2(n+q+2nq)} \equiv \frac{1+2r}{1+2s}$	Al 4	For identifying as correct form, so closed SR $\frac{\text{odd}}{\text{odd}} \times \frac{\text{odd}}{\text{odd}} = \frac{\text{odd}}{\text{odd}}$ earns full credit SR If clearly attempting to prove commutativity, allow at most M1
(iv) Closure not satisfied Identity and inverse not satisfied	B1 B1 2	For stating closure For stating identity and inverse SR If associativity is stated as not satisfied, then award at most B1 B0 OR B0 B1

OCR FP3 Jun 08

	2 6 0			
(a)(i)	e, r^3, r^6, r^9	Ml		For stating e, r^m (any $m cdots 2$), and 2 other different
				elements in terms of e and r
		A1	2	For all elements correct
(ii)	r generates G	В1	1	For this or any statement equivalent to:
				all elements of G are included in a group with e and r
				OR order of $r >$ order of all possible proper subgroups
(b)	m, n, p, mn, np, pm	B1		For any 3 orders correct
		B1	2	For all 6 correct and no extras (Ignore 1 and mnp)
			_	(Ignore Fand III)
		5	9	
2				
2.				
				and the second second
(i)	When a, b have opposite signs,	M1		For considering sign of $a b $ OR $b a $
				in general or in a specific case
	$a b = \pm ab$, $b a = \mp ba \implies a b \neq b a $	A1	2	For showing that $a b \neq b a $
	11 11			
				Note that $ x = \sqrt{x^2}$ may be used
(ii)	and the fell on tell	M1		For using 3 distinct elements and simplifying
	$(a \circ b) \circ c = (a b) \circ c = a b c OR a bc $			$(a \circ b) \circ c \ OR \ a \circ (b \circ c)$
		A1		For obtaining correct answer
ant	$(b \circ c) = a \circ (b c) = a b c = a b c OR a bc $	Ml		For simplifying the other bracketed expression
<i>u</i> •($a \circ c = a \circ (b c) = a b c = a b c \circ K a bc $	A1	4	For obtaining the same answer
(iii)	······································	B1*		For stating $e = \pm 1$ OR no identity
()	EITHER $a \circ e = a \mid e \mid = a \implies e = \pm 1$			
	EITHER $u \circ e - u \mid e \mid -u \Rightarrow e - \pm i$	M1		For attempting algebraic justification of +1 and -1 for
	OR II			e
	$OR e \circ a = e a = a$	A1		For deducing no (unique) identity
	$\Rightarrow e = 1 \text{ for } a > 0, e = -1 \text{ for } a < 0$			
	Not a group	B1		For stating not a group
		(*de	p)	
			4	
		10	0	
			_	