Groups Past Paper Question Pack - Mark Schemes

4 (i)	K L -I -J -K	3 K L T 7 ギ ナ	J ー 上 K フ ー L	L -J -K -L	L -K -I -L K -J	- - - - - 	-√	-K -L J K L	-L K -J L -K J	-	B6	6	Give B5 for 30 (bold) entries correct Give B4 for 24 (bold) entries correct Give B3 for 18 (bold) entries correct Give B2 for 12 (bold) entries correct Give B1 for 6 (bold) entries
		'											correct
(ii)	Eleme nt Invers e			к -к						_	В3	3	Give B2 for six correct Give B1 for three correct
(iii)													
(,	Eleme nt	1	J	K	L		-J	-K	-L	_	В3	3	Give B2 for six correct Give B1 for three correct
	Order	1	4	4	4	2	4	4	4				
(iv)	Only tw so any elemen A subgr an elem Hence	subg t of c roup nent	roup orde of o of o	o of o r 4 rder rder	orde 4 is 4	r 4 n cycl	nust lic if	con	tain ntair	an	M1A1 B1 A1	4	(may be implied) For completion
	B1 G t	con nas c	tains only anno	one t occ	ee el elen cur	leme nent	of o	of o	rder 2; s M				
(v)	$\{I, -I\}$										B1		
	{I, J,										B1		
	{I, K, {I, L,										B1 B1		
	(1, 1,	-,	2.,								B1		For {I, -I}, at least one
												5	correct subgroup of order 4, and no wrong subgroups. This mark is lost if G or {I} is included
	•										•		•

4 (i)	By Lagrange's theorem, a proper subgroup has order 2 or 5 A group of prime order is cyclic Hence every proper subgroup is cyclic											M1 A1 M1 A1	4	Using Lagrange (need not be mentioned explicitly) or equivalent For completion
(ii)	e.g. $2^2 = 4$, $2^3 = 8$, $2^4 = 5$, $2^5 = 10$, $2^6 = 9$, $2^7 = 7$, $2^8 = 3$, $2^9 = 6$, $2^{10} = 1$ 2 has order 10, hence <i>M</i> is cyclic											M1 A1 A1 A1	4	Considering order of an element Identifying an element of order 10 (2, 6, 7 or 8) Fully justified For conclusion (can be awarded after M1A1A0)
(iii)	{1, 10} {1, 3, 4, 5, 9}											B1 B2	3	Ignore {1} and M Deduct 1 mark (from B1B2) for each (proper) subgroup given in excess of 2
(iv)	A, C, C, B, D, F	6, I	are				ıs					B1 M1 A1 A1	4	Considering elements of order 2 (or equivalent) Implied by four of B, D, F, H, J in the same set Give A1 if one element is in the wrong set; or if two elements are interchanged
(v)	P and M M is abe						n					B1 B1	2	Valid reason e.g. M has one element of order 2 P has more than one
(vi)	Order	A 5	B 2	C 5	D 2	E 1	F 2	G 5	H 2	I 5	J 2	В3	3	Give B2 for 7 correct B1 for 4 correct
(vii)	{E,B}, {E,D}, {E,F}, {E,H}, {E,J} {E, A, C, G, I}									M1 A1 ft B2 cao	4	Ignore {E} and P Subgroups of order 2 Using elements of order 2 (allow two errors/omissions) Correct or ft. A0 if any others given Subgroups of order greater than 2 Deduct 1 mark (from B2) for each extra subgroup given		

4 (i)	Associati	Commutative: $x*y = y*x$ (for all x , y) Associative: $(x*y)*z = x*(y*z)$ (for all x , y , z)							ll <i>x, y</i>)	B1 B2	3	Accept e.g. 'Order does not matter' Give B1 for a partial explanation, e.g. 'Position of brackets does not matter'		
(ii)	$2(x+\frac{1}{2})(y$	+ 1/2)	-				$y + \frac{1}{2} = x$		-	B1 ag	1	Intermediate step required		
(iii)(A)	If $x, y \in S$ then $x > -\frac{1}{2}$ and $y > -\frac{1}{2}$						-	M1						
	$x + \frac{1}{2} > 0$			-			_		-	A1				
	$2(x+\frac{1}{2})(y+\frac{1}{2})-\frac{1}{2}>-\frac{1}{2}$, SO $x*y \in S$								5	A1	3	1		
(B)	0 is the i			0+:	r+0	= <i>x</i>				B1 B1				
	If $x \in S$ as $2xy$	nd x	+ y	= 0		n				M1		Of $2(x+\frac{1}{2})(y+\frac{1}{2})-\frac{1}{2}=0$		
	$y = \frac{-x}{2x+1}$									A1		or $y + \frac{1}{2} = \frac{1}{4(x + \frac{1}{x})}$		
	$y + \frac{1}{2} = \frac{1}{2(2x+1)} > 0$ (since $x > -\frac{1}{2}$)								$>-\frac{1}{2}$)	M1		2/		
	SO $y \in S$									A1		Dependent on M1A1M1		
	S is close identity; a inverse in	and e									6			
(iv)	If $x*x=0$), 2x	c ² +	x+:	x = 0)				M1				
	0 is the id	donti	the f	and			or		_					
	-1 is not			anc	ına	5 0	iuei)	A1 A1				
											3			
(v)	4 * 6 = 48 +	4+6	= 5	8						B1				
	= 56 +		/×8	+2										
	So 4 · 6 = 2							B1 ag	2					
(vi)	Element 0 1 2 4 5 6													
	Order	1	6	6	3	3	2	2		B3	3	Give B2 for 4 correct B1 for 2 correct		
(vii)	{0}, G			B1		Condone omission of G								
	{0, 6} {0, 4, 5}				B1 B1		If more than 2 non-trivial							
	{0, 4, 5}										3	subgroups are given, deduct 1 mark (from final B1B1) for each non-trivial subgroup in excess of 2		

4 (i)	In G, $3^2 = 2$, $3^3 = 6$, $3^4 = 4$, $3^5 = 5$, $3^6 = 1$ [or $5^2 = 4$, $5^3 = 6$, $5^4 = 2$, $5^5 = 3$, $5^6 = 1$								M1		All powers of an element of order 6
	In <i>H</i> , $5^2 = 7$, $5^3 = 17$, $5^4 = 13$, $5^5 = 11$, $5^6 = 1$ [or $11^2 = 13$, $11^3 = 17$, $11^4 = 7$, $11^5 = 5$, 11^6								A1		All powers correct in both groups
	G has an element 3 (or 5) of order 6 H has an element 5 (or 11) of order 6								B1 B1	4	groups
(ii)	{1, 6}								B1		Ignore { 1 } and G
	{1, 2, 4}								B2	3	Deduct 1 mark (from B1B2) for each proper subgroup in excess of two
(iii)	$G H$ $1 \leftrightarrow 1$ $2 \leftrightarrow 7$ $3 \leftrightarrow 5$ $4 \leftrightarrow 13$ $5 \leftrightarrow 11$ $6 \leftrightarrow 17$			1 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		1 13 11 7			B4	4	Give B3 for 4 correct, B2 for 3 correct, B1 for 2 correct
(iv)	ad(1) = a(3) = 1 $ad(2) = a(2) = 3$ $ad(3) = a(1) = 2 , so ad = c$ $da(1) = d(2) = 2$ $da(2) = d(3) = 1$ $da(3) = d(1) = 3 , so da = f$								M1 A1 M1	4	Evaluating e.g. ad(1) (one case sufficient; intermediate value must be shown) For ad = c correctly shown Evaluating e.g. da(1) (one case sufficient; no need for any working)
(v)	S is not	abe	elian	; G	is a	belia	an		B1	1	or S has 3 elements of order 2; G has 1 element of order 2 or S is not cyclic etc
(vi)	Eleme nt Order	a 3	b 3	c 2	d 2	e 1	f 2		B4	4	Give B3 for 5 correct, B2 for 3 correct,
											B1 for 1 correct
(vii)	{e, c}, {e, d}, {e, f} {e, a, b}			B1B1B1 B1	4	Ignore { e } and S If more than 4 proper subgroups are given, deduct 1 mark for each proper subgroup in excess of 4					

4 (i)	st(x) = s	$\frac{x}{x}$	1)=	$\frac{x}{x-1}$	-1 -1					M1		
	= *	- 4								A1 (ag)		
	ts(x) = t	$t s(x) = t \left(\frac{x-1}{x}\right) = \frac{\frac{x-1}{x}}{\frac{x-1}{x} - 1}$										
	= (x)	x-1)	$\frac{1}{1-x}$	=1-	x = q(x	()				A1	4	
(ii)			p	q	r	s	t	u				
	p		p	q	r	s	t	u	_			
	q		q	p	S	r	u	t				
	r		r	u	p	t	s	q				
	S		s	t	q	u	r	p				
	t		t s		u	q		r		В3		Give B2 for 4 correct, B1 for 2 correct
	u u		r	t	p	q	s			3		
(iii)	Element	p	q	r	s t	u				В3		Give B2 for 4 correct, B1 for 2 correct
	Inverse	p	q	r	u t	S					3	
(iv)	{p}, F {p, q}, {p, s, u		, r}	, {p	, t}					B1B1B1 B1	4	Ignore these in the marking Deduct one mark for each non-trivial subgroup in excess of four
(v)	Element	1		-1	$e^{\frac{\pi}{3}j}$	e ^{-8/3}	<u>-</u> j	$e^{\frac{2\pi}{3}j}$	$e^{-\frac{2\pi}{3}j}$			
	Order	1		2	6	6	+	3	3	B4	4	Give B3 for 4 correct, B2 for 3 correct B1 for 2 correct
(vi)	$2^1 = 2, 2^2$									M1		Finding (at least two) powers of 2
	$2^7 = 14$, $2^8 = 9$, $2^9 = 18$, $2^{10} = 17$, $2^{11} = 15$, $2^{12} = 1$									A1		For $2^6 = 7$ and $2^9 = 18$
	$2^{13} = 3$, $2^{14} = 6$, $2^{15} = 12$, $2^{16} = 5$, $2^{17} = 10$, $2^{18} = 1$ Hence 2 has order 18							=10, 2	2" =1	A1	3	Correctly shown All powers listed implies final A1
(vii)	<i>G</i> is abelian (so all its subgroups are abelian) <i>F</i> is not abelian									B1	1	Can have 'cyclic' instead of 'abelian'
(viii)	Subgroup	of o	rder	6 is	{1, 2 ³	, 2 ⁶ , 2	2 ⁹ ,	2 ¹² , 2	15 }	M1		
	i.e. {1,	7,	8, 1	1, 12	, 18}					A1	2	or B2

	1	3	4	5	9	_			
1	1	3	4	5	9				
3	3	9	1	4	5				
4	4	1	5	9	3		B2		Give B1 if not more than 4 errors
5	5	4	9	3	1				
9	9	5	3	1	4				
Composition Identity is 1		show	s closu	ire			B1 B1		Dependent on B2 for table
Element 1	3	4	5 9				B2		Give B1 for 3 correct
Inverse 1	4	3	9 5					6	
So every ele	ment l	as an	invers	ie					
Since 5 is pri a group of or	rder 5						B1 B1		
Two cyclic g isomorphic	groups	of the	e same	order	must	be	Bl		
	_							3	
Н	1	e ²	σj e	4 лј 5 с	<u>6</u> πj	e ⁸ / ₅ πj			
G	1	3	3	9	5	4	Bl		For 1 ↔1
or	1	4	1	5	9	3	B2		For non-identity elements
or	1	5	5	3	4	9		3	
or	1	9)	4	3	5			
Identity is (1	, 1)						Bl		
Inverse of (9	9, 3)	is (5,	4)				Bl	2	
$(x, y)^5 = (x + y)^5$	5. v ⁵)					M1	_	
Since G has			=1 an	d y⁵	=1		M1		
Hence (x,)	v) ⁵ = (l, l)					Al (ag)	3	
Order of (x,						be 1 or 5)	M1		
Only identity Hence all of							Bl Al (ag)		
rience an ou	ici eie	mente	a mave	order	,		(-5)	3	
{(1, 1), (9,	3), (4, 9)	, (3,	5), (5	5, 4)	}	B2	2	Give B1 ft for 5 elements including (1, 1), (9, 3), (5, 4)
An element						ip, and so	MI		Or for 24 ÷ 4
can be in onl			roup of	ordei	3		M1		Or listing at least 2 other subgroups
Number is 2	4÷4=	= 6					Al	2	Give B1 for unsupported answer 6

(i)	P 1 5 7 11 1 1 5 7 11 5 5 1 11 7 7 7 11 1 5 11 11 7 5 1 Table shows closure Identity is 1 All elements are self-inverse	B1 B1 B1 B1 [4]	Condone no mention of inverse of 1	
(ii)	$(xy)(y^{-1}x^{-1})$	M1	Or $(y^{-1}x^{-1})(xy)$	
	$=x(yy^{-1})x^{-1}=xex^{-1}=xx^{-1}=e$	E1		
	So $y^{-1}x^{-1}$ is the inverse of xy			
		[2]		
(iii)	$a^{-1} = a, b^{-1} = b, c^{-1} = c, c^{-1} = (ab)^{-1} = b^{-1}a^{-1}$	M1	For any one of these	
	Hence $c = ba$	E1 [2]		
		[4]		
(iv)	bc = b(ba)	M1	Or $ba = c \implies a = b^{-1}c$	Any correct first step
(1.)	bc = ea = a	E1	Or $ba = c \implies a = b c$	Any correct first step
	ac = a(ab) = eb = b	El		
	cb = a, $ca = b$	BI		
		[4]		
(v)	R e a b c e e a b c a a e c b b b c e a c c b a e	В1		
	R is closed	M1	N 10 0 11 0 1	
	Hence <i>R</i> is a subgroup Same pattern as <i>P</i> ; hence <i>R</i> and <i>P</i> are isomorphic	E1 E1	No need to mention identity or inverses Dependent on B1 (only)	
		[4]		
(vi)	Eleme nt A B C D E F G H Order 2 2 2 2 1 4 2 4	В3	Give B1 for 3 correct; B2 for 6 correct	
		[3]		
(vii)			Ignore $\{E\}$ and T in the marking	
	${E,A}, {E,B}, {E,C}, {E,D}, {E,G}$	B2	Give B1 for 3 correct	Deduct 1 mark (from this B2) for each subgroup of order 2 given in excess of five
	$\{E, F, G, H\}$	B1		Deduct 1 mark (from this B1B1B1)
	$\{E, A, B, G\}$	B1 B1		for each subgroup of order 3 or
	$\{E, C, D, G\}$	[5]		more given in excess of three
1	1	[3]	1	I .

(a)	(i)	Identity is e	B1		
		Element a b c d e f g h Inverse b a c g e h d f	B2	Give B1 for four correct	
(a)	(ii)		[3] M1	Finding powers of an element	At least fourth power
(4)	(11)		A1	Identifying d (or f or g or h) as a generator	Implies previous M1
		$d^2 = a, d^4 = c$	A1	Or $f^2 = b$, $f^4 = c$	
				Or $g^2 = b$, $g^4 = c$	
				Or $h^2 = a$, $h^4 = c$	
		Hence d has order 8, and G is cyclic	E1	Correctly shown	
(a)	(iii)	H 0 2 4 6 8 10 12 14	[4]		
		G e d a f c h b g	B1	For $e \leftrightarrow 0$ and $c \leftrightarrow 8$	
		or e f b d c g a h or e g b h c f a d	B1 B1	For $\{d, f, g, h\} \leftrightarrow \{2, 6, 10, 14\}$	In any order
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	D1	For a fully correct isomorphism	
(a)	(iv)		[3]		Or (4) reflections (and 180°
(a)	(IV)	Rotations have order 2 or 4 Reflections have order 2	B1	Correct statement about rotations and/or reflections which implies non-IM	rotation) have order 2 Or composition of reflections (or 90° rotation and reflection) is not commutative
		There is no element of order 8		Or More than one element of order 2	
		Hence not isomorphic	E1	Or Not commutative Fully correct explanation	Dependent on previous B1
		Trenee not isomorphic	[2]	Tany correct expansation	Dependent on previous D1
(b)	(i)	$f_m f_n(x) = \frac{\frac{x}{1+nx}}{1+m\left(\frac{x}{1+nx}\right)}$	M1	Composition of functions	In either order
		$= \frac{x}{1+nx+mx} = \frac{x}{1+(m+n)x} = f_{m+n}(x)$	E1	Correctly shown	E0 if in wrong order
(b)	(ii)	$(\mathbf{f}_m \mathbf{f}_n) \mathbf{f}_p = \mathbf{f}_{m+n} \mathbf{f}_p = \mathbf{f}_{m+n+p}$	M1	Combining three functions	
		$f_m(f_n f_p) = f_m f_{n+p} = f_{m+n+p}$			
					M1E1 bod for
		Hence S is associative	E1	Correctly shown	$(\mathbf{f}_m \mathbf{f}_n) \mathbf{f}_p = \mathbf{f}_{m+n+p} = \mathbf{f}_m (\mathbf{f}_n \mathbf{f}_p)$
(b)	(iii)	For any f_m , f_n in S , $f_m f_n = f_{m+n}$	[2]	76	
(0)	(111)		M1	Referring to this in context	
		$f_m f_n$ is in S (so S is closed)	A1	P0 6 P1 6 0	
		Identity is f ₀ Inverse of f _n is f _n	B1	B0 for x B1 for $n = 0$	
		n -n	B1		
		since $f_n f_{-n} = f_{n-n} = f_0$	B1	Closure, associativity, identity and inverses	
		S is also associative, and hence is a group	E1	must all be mentioned in (iii)	Dependent on previous 5 marks
(b)	(iv)	$\{f_{2n}\}\$ for all integers n	[6] B2	0. (f.)	
(0)	(11)	112n f for all integers n	[2]	Or $\{f_{3n}\}$, etc Give B1 for multiples of 2 (or 3, etc) but not completely correctly described	e.g. $\{f_0, f_2, f_4, f_6,\}$

(i)		$(a^2b)^2 = a^4b^2 = a^4$			
` '		$(a \ b) = a \ b = a$ $(a^2b)^3 = b, (a^2b)^4 = a^2, (a^2b)^5 = a^4b$	M1	Finding one power	
		$(a^2b)^6 = e$	A1	Three powers correct	
		Hence a^2b has order 6	E1	Fully correct explanation	No need to state conclusion, provided it has been fully justified
			[3]		provided it has been faily justified
(ii)		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B2	Give B1 for no more than three errors or omissions	
		The set is closed; hence it is a subgroup of G	B1 [3]	'Closed' (or equivalent) is required	
(iii)		$\{e, a^3\}, \{e, b\}, \{e, a^3b\}$	B2	Give B1 for one correct	Deduct one mark (out of B2) for each set of order 2 in excess of 3
		$\{e, a^2, a^4\}$	B1	B0 if any other set of order 3	
		$\{e, a, a^2, a^3, a^4, a^5\}$	B1		
		$\{e, a^2b, a^4, b, a^2, a^4b\}$	B1		
		$\{e, ab, a^2, a^3b, a^4, a^5b\}$	B1		Deduct one mark (out of B3) for each set of order 6 in excess of 3
			[6]	No mark for { e }. Deduct one mark (out of B6) for each set (including G) of order other than 1, 2, 3, 6	Euch set of order of mexcess of 5
(iv)		$\begin{vmatrix} 11^2 = 31, \ 11^3 = 71, \ 11^4 = 61, \ 11^5 = 41, \ 11^6 = 1 \\ 17^2 = 19, \ 17^3 = 53, \ 17^4 = 1 \end{vmatrix}$	M1	Finding at least two powers of 11 (or 17)	
		11 has order 6 17 has order 4 $19^2 = 1$; 19 has order 2	A1 A1 B1	Either correct implies M1	
			[4]		
(v)		{1, 17, 19, 53}	M1 A1 [2]	Selecting powers of 17 Or B2 for {1, 37, 19, 73}	
(vi)	(A)	Taking $a=11$, $b=19$	B1	There are (many) other possibilities	
		1,11,11 ² ,,11 ⁵ ,19,11×19,11 ² ×19,,11 ⁵ ×19 {1,11,31,71,61,41,19,29,49,89,79,59} i.e. {1,11,19,29,31,41,49,59,61,71,79,89}	M1 A1	Finding elements of G using their a , b	
			[3]		
(vi)	(B)		M1	Reference to group in (ii)	
		1, 11 ³ , 19, 11 ³ ×19	M1	Finding group in (ii) with their <i>a</i> , <i>b</i>	
		{1, 71, 19, 89}	A1 [3]		

(a)	(i)	3*(9*11) = 3*3 = 9 (3*9)*11 = 11*11 = 9	B1 B1		Group table 1 3 9 11
		Construction of group table (or otherwise):	B1		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
		It shows closure,	B1		9 9 11 1 3
		the identity is 1 each element has an inverse	B1		11(11 1 3 9)
		3 ⁻¹ =11, 9 ⁻¹ =9, 11 ⁻¹ =3, 1 ⁻¹ =1	B1		
			[6]		
	(ii)	Element 1 3 9 11 Order 1 4 2 4	B2	-1 each error	
	(111)		[2]		
	(iii)	{1} {1,9} {1,3,9,11}	B1	Condone omission of trivial subgroups	B0 if any extras
	4. >	2 2 3 11 24 1	[1]		
	(iv)	e.g. $3^2 = 9$, $3^3 = 11$, $3^4 = 1$ 3 generates the group and so it is cyclic	E1		
			[1]		
(b)		Composition table: e a b ab e $\left(e$ a b ab a a e ab b b b ab e a ab ab a ab All elements are self-inverse, and so no element generates the group	B3 E1	−1 each error	
			[4]		
(c)		In group G all elements are self-inverse i.e. $X^2 = I$, $Y^2 = I$ and $Z^2 = I$	M1 A1A1		
		so this group is isomorphic to the group in (b)	A1A1 A1	Correctly shown	
		e.g. $\mathbf{I} \leftrightarrow e \ \mathbf{X} \leftrightarrow a \ \mathbf{Y} \leftrightarrow b \ \mathbf{Z} \leftrightarrow ab$	B1B1	Confectly shown	
		C.B. 21/6 21/6 21/60	[6]		
(d)		One of the elements needs to be the identity element.	M1		
(-)		It is neither p nor q for otherwise p ° q = p (or q)	A1		
		It is neither r nor s, for otherwise p ° q = q ° p = r (or s)	A1		
		So there is no identity element and so not a group	E1		
			[4]		