Matrices 2 Past Paper Question Pack

MEI P6 June 02

You are given the matrix $\mathbf{M} = \begin{pmatrix} k & 3 \\ 0 & 2 \end{pmatrix}$, where $k \neq 2$.

- (i) Find the eigenvalues of M, and the corresponding eigenvectors. [7]
- (ii) Write down a matrix P for which $P^{-1}MP$ is a diagonal matrix. [2]
- (iii) Hence find the matrix \mathbf{M}^n . [7]
- (iv) For the case k = 1, use the Cayley-Hamilton theorem to find integers p and q such that

$$\mathbf{M}^9 = p \mathbf{M}^8 + q \mathbf{M}^7.$$
 [4]

(a) (i) Find the inverse of the matrix
$$\begin{pmatrix} 3 & -7 & k \\ 2 & 2 & 5 \\ 1 & 3 & 4 \end{pmatrix}$$
 where $k \neq 0$. [6]

The matrix A has eigenvectors $\begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} -7 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ 5 \\ 4 \end{pmatrix}$ with corresponding eigenvalues -1, 1, 0 respectively.

(ii) Express A as the product of three matrices, and hence find A. [5]

MEI P6 Jun 05

The matrix **M** is $\begin{pmatrix} 2 & 6 & 8 \\ 2 & 3 & 5 \\ -6 & 8 & 2 \end{pmatrix}$.

- (i) Verify that $\begin{pmatrix} 19\\13\\-5 \end{pmatrix}$ is an eigenvector of **M**, and find the corresponding eigenvalue. [4]
- (ii) Find the other two eigenvalues of M, and find corresponding eigenvectors. [8]
- (iii) Find a matrix P and a diagonal matrix D such that $P^{-1}M^4P = D$. [3]
- (iv) Use the Cayley-Hamilton theorem to show that $M^3 = 7M^2 12M$. [2]
- (v) Find a and b such that $\mathbf{M}^4 = a\mathbf{M}^2 + b\mathbf{M}$. [3]

MEI FP2 Jun 16

(i) Find the eigenvalues and eigenvectors of the matrix M, where

$$\mathbf{M} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{2}{3} & \frac{1}{3} \end{pmatrix}.$$

Hence express \mathbf{M} in the form \mathbf{PDP}^{-1} where \mathbf{D} is a diagonal matrix.

[8]

- (ii) Write down an equation for M^n in terms of the matrices P and D.
 - Hence obtain expressions for the elements of M^n .

Show that \mathbf{M}^n tends to a limit as n tends to infinity. Find that limit.

[6]

(iii) Express \mathbf{M}^{-1} in terms of the matrices \mathbf{P} and \mathbf{D} . Hence determine whether or not $(\mathbf{M}^{-1})^n$ tends to a limit as n tends to infinity.

MEI FP2 Jun 17

The matrix \mathbf{Q} is given by $\mathbf{Q} = \begin{pmatrix} 3 & 3 \\ 4 & 7 \end{pmatrix}$.

- (i) Find the eigenvalues and corresponding eigenvectors of Q. [5]
- (ii) State a matrix P and a diagonal matrix D such that $Q = PDP^{-1}$. [2]

(iii) Show that, for
$$n \ge 1$$
, $\mathbf{Q}^n = \frac{1}{8} \begin{pmatrix} 6 + 2\varphi & 3\varphi - 3 \\ 4\varphi - 4 & 6\varphi + 2 \end{pmatrix}$, where $\varphi = 9^n$. [4]

MEI FP2 Jun 18

(i) Find the inverse of the matrix
$$\begin{pmatrix} 1 & 3 & 2 \\ -1 & 2 & k \\ k & 1 & 6 \end{pmatrix}$$
 [5]

The matrix **M** has eigenvalues 1, 2 and 3. The corresponding eigenvectors are $\begin{pmatrix} 2 \\ 0 \\ 6 \end{pmatrix}$, $\begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$ respectively.

(ii) Write down the matrix **P** such that
$$\mathbf{M} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$$
 where $\mathbf{D} = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. [2]

(iv) Find constants a, b and c such that
$$\mathbf{M}^{-1} = a\mathbf{M}^2 + b\mathbf{M} + c\mathbf{I}$$
. [6]