Recurrence Relations Past Paper Pack – Mark Schemes

Edexcel Further Pure 2 June 2019

3(a)	$V_{n+2} = V_{n+1} + kV_n$	B1	3.3
		(1)	
(b)	$\lambda^2 - \lambda - 0.24 = 0 \Longrightarrow \lambda =(1.2, -0.2)$	M1	1.1b
	$V_n = a(1.2)^n + b(-0.2)^n$	A1	2.2a
	$65 = a(1.2)^{1} + b(-0.2)^{1}$ and $71 = a(1.2)^{2} + b(-0.2)^{2}$	B1ft	3.4
	E.g. $78 = 1.44a - 0.24b$ $71 = 1.44a + 0.04b$ $\Rightarrow 7 = -0.28b \Rightarrow b =$	M1	2.1
	$a = 50, b = -25 \Longrightarrow V_n = 50(1.2)^n - 25(-0.2)^n *$	A1*	1.1b
		(5)	
(c)	$50(1.2)^N > 10^6 \Longrightarrow N = \dots$	M1	3.1b
	$\Rightarrow N = 55$ i.e. month 55	A1	3.2a
		(2)	

Edexcel Further Pure 2 June 2020

Auxiliary equation is $9r^2 - 12r + 4 = 0$, so $r =$		1.1b
$(3r-2)^2 = 0 \Longrightarrow r = \frac{2}{3}$ is repeated root.		1.1b
Complementary function is $x_n = (A + Bn) \left(\frac{2}{3}\right)^n$ or $A \left(\frac{2}{3}\right)^n + Bn \left(\frac{2}{3}\right)^n$	M1	2.2a
Try particular solution $y_n = an + b \Rightarrow 9(a(n+2)+b) - 12(a(n+1)+b) + 4(an+b) = 3n$		2.1
$\Rightarrow an + 6a + b = 3n \Rightarrow a =, b =$		1.1b
a = 3, b = -18		1.1b
General solution is $u_n = x_n + y_n = (A + Bn)\left(\frac{2}{3}\right)^n + 3n - 18$		2.2a
$u_1 = 1 \Longrightarrow 1 = \left(\frac{2}{3}\right)(A+B) - 15$ $u_2 = 4 \Longrightarrow 4 = \left(\frac{4}{9}\right)(A+2B) - 12$ $A = \dots, B = \dots$	M1	2.1
$u_n = 12(n+1)\left(\frac{2}{3}\right)^n + 3n - 18$ oe	A1	1.1b
	(9)	

Edexcel Further Pure 2 Sample Paper

8(a)	$u_1 = 1$ as there is only one way to go up one step	B1	2.4
	$u_2 = 2$ as there are two ways: one step then one step or two steps	B1	2.4
	If first move is one step then can climb the other $(n-1)$ steps in u_{n-1} ways. If first move is two steps can climb the other $(n-2)$ steps in u_{n-2} ways so $u_n = u_{n-1} + u_{n-2}$	B1	2.4
		(3)	
(b)	Sequence begins 1, 2, 3, 5, 8, 13, 21, 34, so 34 ways of climbing 8 steps	B1	1.1b
		(1)	
(c)	To find general term use $u_n = u_{n-1} + u_{n-2}$ gives $\lambda^2 = \lambda + 1$	M1	2.1
	This has roots $\frac{1 \pm \sqrt{5}}{2}$	Al	1.1b
	So general form is $A\left(\frac{1+\sqrt{5}}{2}\right)^n + B\left(\frac{1-\sqrt{5}}{2}\right)^n$	M1	2.2a
	Uses initial conditions to find A and B reaching two equations in A and B	M1	1.1b
	Obtains $A = \left(\frac{1+\sqrt{5}}{2\sqrt{5}}\right)$ and $B = -\left(\frac{1-\sqrt{5}}{2\sqrt{5}}\right)$ and so when $n = 400$ obtains $\frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2}\right)^{401} - \left(\frac{1-\sqrt{5}}{2}\right)^{401} \right] *$	Al*	1.1b
		(5)	

(9 marks)