Groups

After completing this chapter you should be able to:

e know and be able to use the axioms for a group - pages 00-00

® be able to use Cayley tables and describe properties of

cyclic groups

-3» pages 000-00

® be able to identify the order of an element and that of

a group

- pages 000-000

be able to identify subgroups of a group - pages 00-00

be able to use Lagrange’s theorem

-> pages 00-00

® Be able to recognise and describe isomorphism between

two groups

Analysis of the symmetry groups
of molecules has led to the
discovery of new molecular
structures such as carbon
nanotubes, the strongest and
stiffest material known to man.

-» pages 00-00

Prior knowledge check

1 The functions f and g are defined as
f)=x*+1,xeR
glx)=|x-3,xeR
Find: a fg(2) b gf(2)
¢« Pure Year 2, Chapter 2
2 Findne {0, 1,2, 3, 4,5, 6} such that:

a 12=n(mod7) b 3°=n(mod7)
¢ 2n=1(mod7) d 6 =n(mod7)
« Section 1.3
4 1 5 0\ o .
3 M_(_l 3)andNa(2 1).Frnd.
a MN b detN ¢ N!

¢ Core Pure Book 1, Chapter 6
4 Write down the 2 x 2 matrix corresponding to:
a a reflection in the x-axis

b a rotation through 90" anticlockwise about the
arigin. « Core Pure Book 1, Chapter 7



Chapter 2

@ The axioms for a group

You have encountered sets of numbers previously in your course, but a set can be any collection of
distinct objects.

= A binary operation on a set is a calculation
E S={a, b ¢ ..} means that the set
that combines two elements of the set to - :
S contains the elements, a, b, ¢, ...

produce another element of the set. You catiwrite a & §'to show that a, for

Some binary operations occur naturally in example, is a member of S.
mathematics. For example, the operation
of addition (+) on the set of integers, Z, is a

binary operation, as it combines two integers to m The order in which the elements
produce a third integer. of the set are combined in a binary operation

is important. For example, subtraction (=)
Similarly, matrix multiplication is a binary operation forms a binary operation on the set of real
on the set of 2 x 2 matrices with real elements. numbers, but in generala-=b# b - a.

S={x+p3:x yeZ}
Show that addition is a binary operation on S.

let s =a+b/3, so =c+dy3 wherea, b, ¢, d e Z. Define two elements of the set.

si+Ss=a+b/3+e+di3=(@a+c)+ b+ dV3 1

Asa b, e,deZ, a+vce Zand b+ de Z
So s, + 8, € S, and therefore addition is a binary

operation on 8.

Add the elements.

Use properties of integers to show that the
sum is also a member of S.

w You can say that the set S'is
closed under addition.
Example o

Show that the set of natural numbers, N = {1, 2, 3, 4, ...}, is not closed under subtraction.

For example, 4,5 €N, but 4 -5 =-1€N~———  You only need to find one counter-example to
' show that N is not closed under subtraction.

For the set of integers, Z, and the binary operation of addition, the number 0 has the property that
for any integer ¢ € Z, a + 0 = a. You say that 0 is an identity element of Z under addition.

= An identity element of a set S undera w Blltary opetations db fot always
binary operation « is an element ¢ € S such have to carrespond to familiar operations such

that, forany elementa € 5, axe=exa=a. as +, —, x or = You sometimes use the symbols

* Or o to denote an unfamiliar or general
binary operation.
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An identity element depends on both the set and the binary operation, and does not necessarily exist.
For example, the set of natural numbers N does not contain 0, so does not have an identity element
under addition. However, the number 1 € N satisfiesa x 1 =1 x a = ¢, so N does have an identity
element under multiplication.

Prove that an identity element of a set S under a binary operation must be unique.

Let # denote the binary operation on S.
Use proof by contradiction.

« Pure Year 2, Section 1.1

Assume that there are two distinet identity elements,

e, fes
exfi=4 eis an identity element and f€ Sso e x f= f.
exf=e

So e = f, which contradicts the fact that e and f

L Similarly, because fis an identity element,
are distinct.

exf=e.
So it is impossible for a set to contain two distinct
identity elements, and the identity element is unique.

The set of integers Z under the binary operation of addition has identity element 0. The integers 4
and —4, for example, are such that —4 + 4 = 4 + (-4) = 0. You say that 4 and —4 are inverse elements
of each other.

= Let S be a set and * be a binary operation )
on S. If an identity element ¢ exists, and

there exist elements ¢, b € Ssuch that a = b = b= a = ¢, then a is the inverse of b and b is the
inverse of a.

The binary operation = on the set of real numbers is defined asa =« b=a + b + ab.

a Find a real number e that satisfies the property a * e = .

The real number m has inverse mi~! that satisfies the property m s m~! = e.

b Express m~! in terms of m.

a axe=da : Set up and solve an equation.
= at+tetae=d
= e+ae=0
= R 0 is the identity element for this binary
Ed =g operation on R.
b me =0

= m+m+mmn' =0
= m+ (1 +mm'=0

i m The real number —1 has no inverse under
Saa = = m# =1

this binary operation.
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Consider three elements of Z under the binary operation of addition. For example, 6, 3,99 € Z:
6+(3+99) =6+ 102=108
(6+3)+99=9+99=108

So 6+ (3+99) = (6 + 3) +99. This is an example of the associative property of addition.

= A binary operation * on a set S'is associative if, forany a, b, c € S,

axbx«c)=(a+bh)=c

A binary operation on R is defined by a o b=ab + 1.

Show that » is not associative.

Consider the elements 2, 3, 4 € R. Problem-solving

2e(@ed)=20(Bx 4+ 1
( ) -2 53 % ) In order for the operation » to be associative,
: 2% 134+ 1=27 it must satisfy a o (b ¢) = (a » b) o ¢ for any
il a, b, ¢ € R. If you can find three real numbers

(@ = E2 i which do not satisfy this condition, then you have
=¥ shown that « is not associative.
=7%x4+1=29

S0 20 (304)F# (2 3)e4, so the operation

e is not associative.

— Write a conclusion.

You can use the properties of binary operations to define a group.

= If Gis a set and = is a binary operation m DL o oo ther Ui
deﬁne.d on G, the." (G, #) is a group if the binary operation that satisfies these four axioms.
following four axioms hold: A set on its own is not a group.

» Closure:foralla, be G,axbe G

« Identity: there exists an identity element ¢ € G, such thatforallae G,axe=e*xa=a

+ |nverses: for each a € G, there exists an inverse element 4! € Gsuchthata+al=alxa=¢
 Associativity: foralla, b,ce Ga=(b*c)=(axbh) *c

Show that:
a the set of integers forms a group under addition

b the set of integers does not form a group under multiplication.
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a Closure: The sum of two integers is an integer, | w You can write this group as (Z, +).
so the set is closed under addition.
Identity: Forallne Z n+0=n=0 +n List each axiom and explain why it holds for
O € Z so there is an identity element. integers under addition.

Inverses: For alln € Z. n + (—n) = (—=n) + n = 0.

—n € Z so —n is the inverse of n. m Check that inverse e[ements

Associativity: a + (b +¢)=a+b+c¢=(a+Db)+c¢ ——  are members of the set. If the question was

forall a, b, e € Z. about ‘positive integers’, then the negative
Hence the set of integers forms a group undler of each integer would not be a member of
addition. the set.

b foralneZ nx1=1xn=n
So the identity element is 1. It is possible to prove associativity more
O is an integen but there is not an integer n | formally. In your exam, you will be told if
sudh bk B = you can assume that the associativity axiom

The inverse axiom fails, so the set of integers aelds: =>Exerclse 28 Challenge

does not form a group under multiplication. ;
Problem-solving

You only need to show that one of the four
axioms fails. For the inverse axiom to hold,
every element in the set must have an
inverse. You could also say that there is no
integer n such that2 x n= 1.

The operation * is defined by @ * h = a + b — 1, where a and b are real numbers.
Determine whether the set of real numbers under the operation * forms a group.

Closure: The real numbers are closed under addition

and subtraction, so @ + b — 1 is a real number LGRS You must check that that
Identity: a* 1=a+1-1=ua the identity works when applied in either

UG el e direction, sothataxe=e*a=a

1is a real number

So the identity element is 1.
Remember to show inverses in both

1 5 .
directions.

1
If a is a real number , then 2 — a is a real number.

Inverses: a % (2 —a)=a+ (2 —a) =

1l

(2—a)xa=(2 —a)+a—1

Il

The inverse of each element a i 2 — a.

Associativity:

faxb)*c=@+b=N=xc=a@a+b-=1+c¢—-1
=a+b+c¢-2

axhzce)=asb+e-1=a+b+c—-1) -1

a+b+c-2

Therefore * is associative.

Show that the associativity axiom holds.

Hence the set of real numbers form a group under . —— All four group axioms hold, so (R, #) is a group.
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Prove that, for all elements «, b in a group (G, *), there exists a unique element ¢ such that a * ¢ = b.

Existence: let e = a7 * b L Start by proving that such an

a-' € G (by inverse axiom) and a~' * b € G (by closure axiom) element exists, and then prove

Thena*c=a = (a' * b)= (a * a') * b (by associativity axiom) that it must be unique.
=exh=5h

Uniqueness: Assume there is a distinct element d € G which also
satisfies a * d = b.
Thend=exd=(a'=a) « d=a' = (a = d) (by associativity axiom)
= % B
=a'*(a*c) b=a=xc

= (arl#.a) % &

=& % e=ic

So d = ¢, which is a contradiction, so ¢ must be urique.

m Similarly, there is a unique element /'€ G which satisfies

[+ a=b. These two properties are called the latin square property,
and are important when constructing Cayley tables. = Section 2.2

Exercise @

1 S={x+)3:x,yeZ}
Determine whether each of the following is a binary operation on S.

a subtraction b multiplication m You need to determine whether
¢ division Sis closed under each operation.

2 Determine whether each set is closed under the operation *.

et x xiy! —
a positive integers, x * y = Ny b real numbers, x * y = /X +y

¢ odd numbers, x * y=x?y d complex numbers, x * y = [x]| + [y|

3 For the set C of complex numbers under the binary operation of multiplication,
a state the identity element

b find the inverse of 1 + 1, giving your answer in the form a + ib.

4 For the set of matrices of the form (g ?) a € R, a # 0, under matrix multiplication,
a state the identity element b find the inverse of (g 1)

5 Determine whether each of the following operations is associative over the real numbers.
Xy

a x*y=xy? b x*xy=3
c xxy=|x|+|y d xxy=xy+x+y
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Groups

Determine whether each of the following pairs of sets and @ Posiiive:meansthath
operations form a group. You may assume that the real is excluded.

numbers are associative over addition and multiplication.

a positive real numbers, x b integers, +

¢ odd integers, + d even integers, x

e real numbers, — f positive rational numbers, +

The operation * on the set of rational numbers, Q, is defined by a * b = %
a Prove that Q is closed under *.

b Show that this binary operation does not have an identity element.

The operation * on the set of positive integers Z+is defined bya«b=a+ b - 2.

a Determine whether or not * is;
i closed il associative. (3 marks)

b i Find the identity element for *.

ii Hence show that Z* does not form a Problem-solving Find anelerient

group under *. (4 marks) of Z+ that does not have an inverse.

The operation x* is defined by « * b = ab + a, where a and b are real numbers.
Show that R does not form a group under *. (4 marks)

Show that the set of integer-valued 2 x 2 matrices forms a group under addition.

You may assume that addition of integers is associative. (5 marks)
Show that the set of 2 x 2 diagonal matrices (g 2) with 4 #£ 0, forms a group under
matrix multiplication. (4 marks)

Let M be the set of matrices of the form (g f) a,b,ce R,and a # 0 and ¢ # 0.

Prove that M is a group under matrix multiplication. (6 marks)

Show that the set of functions of the form f(x) = ax + b, where a, b € R and a # 0,
forms a group under function composition. (6 marks)

Prove that for any element a in a group, the inverse of « is unique. (2 marks)

Prove that for all elements g, b in a group (G, *),

a (@Y 'l=a b (axb)'=b"!%a!
A set G forms a group under the operation of Problem-solving BV PR
multiplication. For ¢, b € G, prove that L

on the left and b-' on the right.
a’h? = (ab)* = ab = ba (3 marks)
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17 A group (G, o) contains elements ¢ and b such that Problem-solving N TR T ETNOe,

a and b are self-inverse.

; ) group x is self-inverse if x = x-1.
Given that @ e b = b e a, prove that a « b is also

self-inverse. (4 marks)
Challenge Problem-solving
The set N° s the natural numbers including 0. The Peano axioms The Peano axioms are a formal
for defining this set are: way of defining natural numbers:
1 0eRi’ 1=5(0)
2 Forany a € N° there exists a successor S(u) € NC 2 = 5(1) = 5(5(0))
3 0is not the successor of any number. 3 =5(2) =S(5(5(0))
& Form, neN° m=n< Sim) =5S(h) and so on.
5 If aset N contains0,anda€ N = S(a) € N, then N = N°.
a Prove that N? must contain an infinite number of elements.

You can define addition (+) on the set N as follows.

For any a, b € N,

6 a+0=a

7 a+5(b)=5a+b)

b Using this definition of addition, prove by induction that, for
anya, b,ceN® (@+b) +c=a+ b+

@ Cayley tables and finite groups
In the previous section, all the groups you considered contained an infinite number of elements.
A finite group contains only a finite number of elements in its underlying set.

You can represent a finite group in a Cayley table.

m A Cayley table fully describes the structure of a finite group by showing all possible
products of elements of the group.

Here is part of a Cayley table for a group with underlying set {«, b, ¢, ...} and operation .

c All the elements of the underlying set are m The row

*
ol written as row and column headings (in the heading is always the first
% l same order). element in the operation,
b The element corresponding to ¢ # b is at the and the column heading is
¢c|— d intersection of the row containing ¢ with the the second element in the
column containing b. In this case, c* b =d. operation.
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The set {1, -1, i, —i}, where i* = —1, forms a group under multiplication.
a Draw a Cayley table for this group.
b Write down:

i the identity element ii the inverse of i iii the inverse of —1
= M A B S —1 x (—i) =1, so the entry at this position is .
111 =1 i =i |7
T T R Problem-solving
i o= =1 The entries in the Cayley table are all members
Wl N TR | of the underlying set {1, -1, i, —i}. This shows that

b i Tisithe identity the set is closed under multiplication.

n =i
] The entries in the row corresponding to 1 are the
same as the corresponding column headings, and
similarly for the column corresponding to 1. This
shows that 1 x a=a x 1 = a for all elements ¢, so
1 is the identity.

Look for the identity in the row corresponding to i,
then read off the corresponding column heading.

The properties of groups give rise to corresponding properties of Cayley tables:

® When a group’s elements are displayed in a Cayley table, then:
« all entries must be members of the group This is a consequence of the latin square

» every entry appears exactly once in every ——— property of groups. « Example 8
row and every column

+ the identity element must appear in every
row and column

Because every element has an inverse.

» the identity elements are symmetric Because a~! % a = a x ™! for every element
across the leading diagonal in a group.

Modular arithmetic groups

You can use modular arithmetic to define finite groups on sets of integers. You will need to use the
operations of multiplication modulo # and addition modulo .

= The operation x, of multiplication modulo # is defined on integers a and b as the remainder

when ab is divided by n. z
5 You can use =, to show multiplication
= The operation +, of addition modulo or addition modulo ». For example,
nis defined on integers ¢ and b as the 4 x 3 =y,2 because 4 x 3 =2 (mod 10)
remainder when a + b is divided by n. 6+5=4 because 6 + 5=4 (mod 7)

& Section 1.3
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The Cayley tables below show the set {0, 1, 2, 3, 4} under the actions of addition and multiplication

modulo 5.
+#|(0 1 2 3 4 x| 0 1 2 3 4
0|0 1 2 3 4 00 O O 0 O
1 1 2 3 4 0 10 1 2 3 4
Z | 2 3 & B 4 2|10 2 4 1 3 2x4=8and8=3 (mod5)
3|3 4 0 1 2 30 3 T 4 2
414 0 1 2 3 410 4 3 2 1

The set S = {0, 1, 2, 3, 4}. Use the Cayley tables above to determine whether S forms a group under:

a addition modulo 5 b multiplication modulo 5

a

Closure: All elements are members of 8, so the
set is closed under addition modulo 5.
ldentity: The identity element is O.

Inverses: Since O appears in every row and

For example, the inverse of 2 is 3.
every column, then every element has an inverse.

Associativity: Addition on the integers is
associative, so addition module 5 is associative,

Hence (S, +5) is a group.
Problem-solvin
The identity element is 1.
1 does not appear in the O row, or the O column. You can see from the Cayley table that the

set {1, 2, 3, 4} does form a group under

(S, %5) 15 not a group since O does not have an
multiplication modulo 5.

inverse,

S=1{1,3,7,9}. Determine whether each of the following are groups. You may assume that the
associative law holds in each case.

a (S, %) b (S, x;,)

10

Construct a Cayley table

xo|1 3 7 9
111 38 7 9
3(3 9 1 7
7|F 4 8 B8
919 7 3 1

Closure: From the table, the set is closed under
multiplication module 10.
ldentity: The identity element is 1 since

Ixa=ax1=aforalaebs.



Inverses: 1 and 9 are self-inverse, and 7 is the

inverse of 3 and vice versa.

Associativity: Assumed

Hence (S, x40) 15 a group.

b 1x3=,3
3xX3=,9
T%3=09
Gx3=,3

50 3 has no inverse, so S is not a group under X,

Groups of permutations

Operations on sets do not need to correspond to familiar arithmetic operations. For example, consider
an arrangement of 3 cups. The order in which the cups are arranged can be altered in 6 different ways.
Each of these ways is called a permutation:

. . @ e = Identity (no change)
1 2 3
¥ X
. . p = Swap positions 1 and 2
==
1 2 3
¥ X
' . @ g = Swap positions 2 and 3
1 2 3

r= Swap positions 1 and 3

—
) >
(W)

)

o
D
(D

(
(

)

(o
(o
(D

[
(

Y

v

v

s = Cycle clockwise

Y

H@
I.‘.\“}-
L"J-

t = Cycle anticlockwise

A J

H@
N-
u-

For a small set you can write down all the

-—

inverses.

Groups

Problem-solving

An element of a set (other than 1) thatis a
divisor of n cannot have an inverse under

multiplication modulo n. Work out

a x 3 (mod 12) for every element a € S to

show that no inverse exists.

1 2 3

1 2
1 2

._.-
N@
L“J-

@ The cups move,

but the positions
(numbered 1, 2 and
3) stay the same. An

identity permutation

(one which does not

move any cups) is also

included.

11
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You can define a set S of these 6 permutations, and you can m
. : i Unless you are
define an‘operatlon o on this set as the qupos:tlon of two told otherwise in a question,
permutations. For example, the composition p o ¢ would mean permutations are composed in
‘swap positions 2 and 3 and then swap positions 1 and 2", the same way as functions, so
The diagram below shows that this has the same effect as the ::atP e ¢ means do ¢ first and
en p.

single permutation r:
pPeog=1

m
— — >
1 2 3 1 2 3 1 % 3

For the set of permutations of 3 cups, {e, p, ¢, r, 5. t} as defined above, find:

a geop b ror
; )
a Bey—2 gay—L- Gy F Note that g e p# pog
Sogep=3s
r r " reris the identity permutation, e, so r is
b BGY YGB BGY

= self-inverse.
SEEFEE Sk The construction of the complete Cayley table for
this group is left as an exercise. = Exercise 2B Q12

This group of all 6 possible permutations of 3 objects, together with the operation of composition, is
called the symmetric group on 3 elements.

® The symmetric group on 1 elements is defined as the m THis Rraup I Gfteh
group of all possible permutations that can be performed denioied aes.

on n objects, together with the operation of composition.

You can use two-row notation to write permutations more quickly. Here are the permutations in the
example above written using two-row notation.

e_(l 2 3) _(1 2 3) _(1 2 3)
=1 2 3 P=iz 1 3 =1 3 2

r_(l 2 3) _5__(1 2 3) I_(l 2 3)

i3 2 1 N2 3 1 A3 1 2
The use of two-row notation for permutations makes it easy to find compositions and inverses.

Consider the following two permutations on 5 objects.

_(12345) rj,_(12345)
“\5 1 2 4 3 PT\s 4 2 3 1

12
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In the composition « - 3, the element in position 1 moves to position 5 (under (3), then to position 3
(under a). So in e » 3 the element in position 1 moves to position 3:

1 2 3 4 ;\ M2 3 45 (M23 465
(_}'OIS: * o ‘ == ¢

5 1 2 4 KJS 4 2 3 1 4 1 2 5
Similarly,
800::(1 2 3 4 5)0(1 2 3 4 5)3(1 2 3 4 5)
; 5 4 2 3 1 5 1 2 4 3 1 5 4 3 2
y z : ; : 1 2 3 4 5 "
The identity permutation on 5 objects is ¢ = > 3 4 5)%° to find the inverse of a

permutation read from the bottom row to the top row rather than from top to bottom. For example, if
1 appears below 2 in a permutation a then 2 must appear below 1 in oL

123 4 5 4_(1 2 3 4 ﬂ
hc"‘“‘(s 1 2 4 3)ﬂm”a 2 3 5 & 1

Show that the permutations

e_(l 2 3 ﬂ _(1 2 3 ﬂ _(1 2 3 ﬂ _(1 2 3 ﬂ
"1 23 4 “\3 41 2 43 21 "2 1 4 3

form a group under composition. You may assume the associativity axiom is satisfied.

r

P [ r p°q=(;

q _(1
roe p “\2

qg p e
Closure: The elements of the table are all

~
=
=

%10

L I = ¥

= a8 N oon
b T~ T~ T <
W
o N R Tt ]

members of the set and hence it is closed.
Identity: e is the identity element.

Inverses: The identity transformation e is
included in every row and column, so every ————— eee=¢, pop=¢, qog=eandrer=e.
element has an inverse,

Associativity: Associativity is assumed in the m

compositianr Ermsiormations. This group is called the Klein four-group, K.
Hence the set is a group under composition.

13
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Groups of symmetries

You can construct finite groups by considering the symmetries of shapes. Consider the different ways
in which an equilateral triangle can be rigidly transformed onto itself.
1
Start by labelling the positions (outside the triangle) and the
vertices (inside the triangle). The positions will stay the same,
but the vertices will move as the triangle is transformed.

2 3

There are three rotational symmetries-

A A A

Clockmse ? Anticl ockw1se T (or clockwise —)

1 2 3 1l 2 3 1 2 3 Using two-line notation where
;=(1 2 3) R=(3 1 2) S=(2 3 1) the second row shows the

. . image of each vertex after the
There are three reflections through the three medians: 8 .
: transformation.

1

1 1

(1 2 3 (1 2 3
L_(1 3 2) M‘(3 2 1)

Show that G = {I, R, S, L, M, N} forms a group under composition of transformations. You may
assume that the associative law holds.

o | I R § L M N
Il7 R S L M N For example, Re L = (j;_ g i) ° G g g)
R\ R S I &) L M ~ ( 2 3) _N
S|S I R M N L e 13
L |\ &L M N T KB S
M\M N L S§ I R
N| N L M R N I
Closure: The elements of the table are all The element S is sometimes called

members of the set, so the set is closed. R2because S= R R

14
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Identity: [ is the identity element. —— Use the Cayley table to show that the four
Inverses: The identity transformation [ is included group axioms hold.

in every row and column, so every element has an

Associativity: Associativity is assumed in the 2 Ve group of symmetties oran
n-sided regular polyhedron is sometimes
called a dihedral group, and is denoted as
D, (as it contains 2n elements).

composition of transformations.
So the set of symmetries of the equilateral triangle
forms a group under composition.

Show that the symmetries of a rectangle form a group under composition of transformations.
You may assume that the associativity axiom holds.

Label the positions of the vertices, and

1 5 Problem-solving
I
i

----------------- e IR the vertices themselves, with integers. You
i could use a piece of cardboard to help you
4 i & visualize the possible transformations. Make
4 : 3 sure you label both sides of the cardboard.
1

: " R (1 4)
Ident1tytran5f0|matlon.{-(1 5 3 4

; , M 2 3 4
Rotation m about the centre: p = (3 4 2)
Reflection about horizontal axis of symmetry:
| & 8 4 Use two-line notation to define the image of
7= (4 3 2 T) each transformation.
Reflection about vertical axis of symmetry:
P (12 21 i ;) These are the same permutations shown in

Example 13. This group is also the Klein four-
group. It is not a dihedral group because the
rectangle is not a regular polygon.

- Section 2.4

From the working shown in Example 13, these

permutations form a group under composition.

Cyclic Groups
Some of the groups you have already considered have the property that all of the elements of the
group can be obtained by repeatedly applying the group operation to a particular single group element.

® A cyclic group is a group is a group in which every w Tt Rl the el
element can be written in the form %, where a is operation k times. For example, a* = a e a o a.

the group generator and £ is a positive integer.
* (Z, +) is cyclic, as applying repeated addition to 1 generates every element of the group.

 {0,1,23,...,n—1}is a cyclic group under addition modulo . m S oreinis
1and n — 1 are both generators of this group. COHatiES denofed an) -
=

15
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Theset S=1{0, 1,2, 3,4, 5,6, 7} is a group under addition modulo 8. Show that 3 is a generator of
this group and write each element in terms of this generator.

=3
o j ; LGLUCIE |n this notation, 32 means ‘apply the
5 e : group operation twice, 5032 =3 + 3 =; 6.

3=,

34 =, 4

sl =

3F =2

37=z5

32=,0

All the elements of § can be written in the

This group also has generators 1, 7 and 5.

form 3% for some plositive integer k, so 3
generates the group.

The set {1, 3, 5, 7} forms a group under multiplication modulo 8.
Show that this group is not cyclic.

1 can only generate 1. Under multiplication, 1 is the identity.
32=,1,3% =53, ... ]
s0 3 can only generate 1 and 3. Check each element to see whether it can
B2=p 1,53 =45, . generate the group. If the pattern repeats
so 5 can only generate 1 and 5. without having generated every element then
72=,1, 73257, ... you know that element cannot be a generator.
so 7 can only generate 1 and 7. _|
There is no element that can generate every m This is another example of the Klein four-
element of the group, so the group is not group. This is the smallest non-cyclic group.
cyclic. - Section 2.4

Exercise @

1 Theset S= {1, -1} forms a group under multiplication. Construct a Cayley table for (S, x).

2 Construct a Cayley table for each set under the given operation. Determine, with reasons,
whether the set and operation form a group.

a {—1,0, 1} with addition
b {1,5,7, 11} with multiplication modulo 12

16
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3 Theset G=1{1,2,3,4,35, 6} forms a group under multiplication modulo 7. Complete the

following Cayley table for this group.

x| 1[2[3]4]5]6
4

S B B

1 (3 marks)

® 4 Theset S=1{1,2 4, 8} isa group under multiplication modulo 15.

a ii Construct a Cayley table for (S, x;5)
ii Show that S forms a group under multiplication modulo 15. You may assume
that the associative axiom is satisfied. (6 marks)

b Show that S does not form a group under multiplication modulo 12. (3 marks)

The set G = {a, 2, 4, 6} forms a group under the operation of addition modulo 8.

a Write down the value of a. (1 mark)
b Complete the following Cayley table for (G, +).

5 2/4]6

2 4

4 2

6 (3 marks)
¢ Find an element which generates (G, +¢) and write each element in terms of

this generator. (2 marks)

The operation o is defined on the set S = {0, 1, 2, 3} e hia eisbre the remalnder

byaeb=ab+ a+b(mod)53)

when ab + a + b is divided by 5.
a Complete the following Cayley table for (S, <).

o 0| 1|23

0

1

2 |

LAE. (3 marks)
b Show that S is a group. You may assume that the associative law is satisfied. (3 marks)

Consider a set A = {a, b}. Let M = {q, r, s, t} be the set containing mappings on the elements of
A defined by:
gla) =a, qb) = a; r(a) = a, r(b) = b; s(a) = b, s(b) =a; la)=b, (b)=b
a Construct a Cayley table for composition of
Elappings o, a8 )ailf):;)peration on AI; t m SO sl M il
o both @ and b onto a.
b Write down the identity element for o.
¢ State, with reasons, whether (M, o) forms a group.

17



Chapter 2

(P) 8 The operation # is defined on the set 4 = {10, 20, 30, 40, 50} by the Cayley table below.

(EP) 10

(E/P) 11

® 12

18

&

10

20

30

40

50

10
20
30
40
50

10
10
20
30
40

10
20
10
20
30

20
10
30
10
20

30
20
10
40
10

40
30
20
10
50

Determine whether each of the following statements is true or false, giving reasons for your

dNSWCETS.

a A is closed under the operation .

b There is an identity element.

¢ * 1§ associative.

d (S, %) is a group.

The binary operation * is defined on the set G = {0, 1, 2, 3} by

axbhb=a+2b+ ab(mod4)

a Construct a Cayley table for (G, *).

b Determine whether * is associative, justifying your answer.

¢ Find all solutions to the equation x * | =2 % x, forx € G

A student writes the following:

§=1{1,9,16, 22,53, 74, 79, 81} forms a
group under multiplication modulo 91.

a Show that the student is not correct.

(3 marks)
(3 marks)
(3 marks)

(2 marks)

b Write down one additional element the student can include in S to make the
statement correct.

(1 mark)

Let S be the set of non-negative integers less than #.
Given that S contains an element a # 1 such that a | n, prove that S does not form a
group under multiplication modulo n.

(4 marks)

The group S; consists of the set of all possible permutations of 3 objects, together with
composition. The underlying set has 6 elements:

_(123)
=\1 3 2

b Verify that S, satisfies the closure, identity and

S
-

a Construct a Cayley table for S;.

1
1

1
3

2
2

2
2

y

)

inverse axioms.

¥l

-

1
3

2 3
| B
2 2
1 2

)
|

g

123)
2 3 1

m These are the possible permutations
of 3 cups given on page 12.
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1 2 3 4 234)
1 4 3 2 1 4 2

Compute each of the following, where ¢ is the composition of permutations.

13 Consider the permutations ¢ = ( ) and b = (é

Give your answers in two-row notation.
a boa b aeh ¢ gl d p!
e bleu’! f alebp! g (bea)! h (aeb)!

14 Consider the set M = {1, 3, 9, 11} under multiplication modulo 16. For the purposes
of this question, denote this multiplication by x.

a Showthat3x(9x11)=(3x9)x11. (2 marks)
b Show that (M, x) is a group. (5 marks)

¢ Show that this group is cyclic, and write down all possible generators of
this group. (3 marks)

15 Show that the following groups are cyclic and find their generators.
a {1,3,7,9} under multiplication modulo 10
b {4, 8, 12, 16} under multiplication modulo 20
¢ {1,2,4,5,7, 8 under multiplication modulo 9

® 16 Explain why 6 cannot generate a group under multiplication modulo 8.

17 A group (G, x,,) is generated by the number 5.

Find the members of G, and write each one in terms of the generator. (3 marks)

(E/P) 18 a Show that w = o (1 4+ 1) generates a group under the operation of complex
multiplication. (5 marks)
b Write down the other generators of this group. (2 marks)

19 The vertices of a pentagon are labelled as follows:
1

3 4

12345)—(12345)31'1(1-(12345)
1 2 3 4 §" 2 3 4 5 1 Pi=\3 4 5 1 2

correspond to clockwise rotations of 0°, 72° and 144°.

The permutations p, = (

19
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EP) 20

a Write the permutations p, and ps that correspond to clockwise rotations of 216°

and 288° respectively. (2 marks)
b Complete a Cayley table for P = {p,, p», ps, ps, ps} under composition. (4 marks)
¢ Prove that the set of rotational symmetries of a pentagon form a group under

composition. (5 marks)
d Show that this group is cyclic, and that it is generated by p;. (3 marks)

The vertices of a hexagon are labelled as follows:

1 i 6
1

-2
Lh

3 4
a Write down four permutations A;. h,, hs, hy that correspond to the four symmetries
of the hexagon. (4 marks)

b Show that the set of symmetries H = {h,, h,, 5, h;} form a group under composition.
(6 marks)

Explain why H is not a cyclic group. (2 marks)

e}

Challenge

The solid shown is a right triangular prism whose cross-section is an
equilateral triangle.

@ Your group should

Construct a Cayley table for the group of symmetries of this solid. contain 12 elements.

20
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@ Order and subgroups

You can use order to describe the size of a finite

group. mThe order of G is written as |G|.

Groups with an infinite number of elements, such

® |f a finite group G has n distinct elements, a5(Z +) are said to have infinite order

then the order of Gis n.

You can also consider the order of individual elements within a group. In Example 17, you looked
at the group {1, 3, 5, 7} under multiplication modulo 8. This group has identity 1,and 32=1,52=1
and 7¢=1.

You say that the elements 3, 5 and 7 all have order 2.

® The order of an element « in a group w The order of the element « is written
(G, *) with identity ¢ is the smallest as [al.
positive integer k such that a* = ¢. An element has finite order if o = ¢ for some
" If (G, #) is finite with a € G, then BE &
(G. *.) e An element has infinite order if ¢ # e for every
|a| divides |G|. i

B (G, *) is cyclic if and only if there exists an
element a such that |a| = |G |. This element will be a generator of the group.

Let (G, ) be a finite group. Prove that every element in G must have finite order.

G| =n G is a finite group, so it must have a finite
T —

2 , number of elements.
Let a be any element in G, and consider a, a2,

o S

Since G is closed, these values are n + 1
elements of a group with n distinct elements.
So at least two of them must be equal, say

al = ak, with j > k

Tl"IEI‘"I {(’-’l‘{l_k {g'k{,{[_k a_i\ means ﬂ_l o a_l B i ﬂ_l
- e —— ———

= . k times

So |a| = j— k, and must be finite, as required.

For each of the following groups, write down the order of the group, and the order of each element
in the group.

a {1, -1,1, —i} under complex multiplication
b {1, 3, 7,9} under multiplication modulo 10

21
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a The group contains 4 elements so it has The identity element always has order 1.

order 4. ’7

1] =1 -12=1

|-1] =2 [ Any element of a group with order 2 is self-inverse.

li| =4

(i) = 4 Liz——l,P:—i,i":l

This is a cyclic group with order 4, and both i and

b The group contains 4 elements so it has —i generate the group, so they both have order 4.

order 4.

1| =1, 13| =4, 7| =4and |9] =2 ———— 3*=81=,y1,7%=2401 =51 and P =81=,,1

G has elements {e, p, p?, p’, 4, pq. p*q. p*q} under multiplication, where e is the identity.
You can assume the associativity axiom is satisfied.
A partially completed Cayley table is shown below.

x |e|p | P | P | g |pe|Pe|Py
e le|lp | PP | aqa|re|Pq|Pa
plp PP | e |pg|Pg|Pq| g
PPy P |e | p |Pglra| g |pry
Plprle|p | P |Py

g | q |Pq|prq]| prg

pa | pg | g |Pa | Pg| P

Pelrq|pe| g9 (PP
Pe|rq|prqg|\re| g9 | P

a State the order of the group.
b State the order of p and ¢.
¢ Complete a Cayley table and verify that G forms a group.

1 2 3
d Find the order of pgq, p’q and p’q. m You cannot assume that pg = gp.

'a The group has 8 elements, so |G| = 8. r From the table, p x p® = ¢, so p* = e.

b p has order 4.
g has order 2. From the table, g x g =eso ¢’ =e.

22
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Problem-solving

c k] 2 3
: : ﬁ }Ii 23 3 ij ‘;23 ;I’;Z Use the as?oc‘iative la.W, lfhe orders of p and ¢
and the existing entries in the Cayley table to
plp PP e |pg|rglrd| g write each product as an element of the set.
PP e |p|ra|pral a|re For example,
pPlple|p |P|Pq|l g |pg|prd pPxpg=pq=yq
g | alpglpglpe| e | p| 2] p gxpg=qpxq=pqxq=pq-=p’
Pa\pa| q |Palpa|p | e |p|p° ﬁquxp ;f;_‘v ;ff;?%;ffﬁf e ;0 2
2 3 3 £\ = =
adladl: IR A1 AE RE AP Pa% P4 =pap)q=p°¢ =p
Pg|\pa\pqg pPqg| g |\ PP P ¢

Closure: Each element that appears in the |
table is a member of G, so G is closed.

| tity: e is the i tity.
e Use the Cayley table to show that the four group

Inver'ses-: e d ears in ever row and i T— v
PP Y axioms hold.

column, so every element has an inverse.

Associativity: Associativity is assumed.

Hence, G is a group under multiplication. |

d (pg)f* = (pg*F = (pg®7 = e
So pq, p2q and p3q are of order 2.

The set {0, 1, 2, 3, 4} forms a group under addition modulo 5.
Explain why no element of this group, other than the identity, can be self-inverse.

The order of the group is 5. 0 is the identity element. If the element a was
Any self-inverse element, other than the ’7 self-inverse you would have a + ¢ = 0.

identity, must have order 2.

But the order of an element must divide the m The identity element of any group is always
self-inverse, since ¢o ¢ = e.

order of the group. Since 2 does not divide 5,

there can be no such self-inverse element in
Any group with odd order cannot contain a self-

the group.
inverse element, other than the identity.

® Let ¢ be an element in a group (G, =), then:
« if a has a finite order n, then a™ = ¢ if and only if njm
« if @ has infinite order, thenx 2z y = a* 2 @
« if a* = @® with x # y, then @ must have finite order.
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Subgroups

If some subset of the underlying set of a group satisfies the group axioms under the same operation,
then it is called a subgroup. For example, consider the set S=1{0, 1, 2, 3, 4, 5, 6, 7} of non-negative
integers less than 8, which forms a group under addition modulo 8.

The subset of S given by T'={0, 2, 4, 6} also forms a group under addition modulo 8.

Since T'is a subset of S, and because each set forms a group under the same operation, you say that

(7,

+g) is @ subgroup of (S, +g).

If a non-empty subset H of a group G'is
itself a group under the binary operation
of G, we call H a subgroup of G.

« If H C G, then H is a proper subgroup of G.

» If H C G, then H is a subgroup of G.

Every group has at least two subgroups, ({e}, )
and (G, #) itself. ({e}, #) is called the trivial
subgroup, and any other subgroups are
called non-trivial subgroups.

a Show that the set S = {5": n € Z} forms a group under multiplication.

B C A means that the set Bis

contained in the set 4. B is a subset of 4.

B C A means that B is contained in, but not
equal to, A. Bis a proper subset of 4.

This notation can be applied either to sets or to
groups.

@ vco- <o

HC G= |H| <|G|

b Determine, with reasons, whether each of the following subsets of S forms a subgroup of (S, x).

i T={5:nez) i U=1{5:nez*

a Closure: 59 x 5" = 5a+b,

Foranya.be Z,a+be Z, s0 5" € S.

lderntitys. 5% S, 8tid BYR SFs 8 5P = 57

for all n € Z, so0 5% is the identity element.
Inverses: 5% .51=15% ¥ 5= 5%
Foranyae€e Z, —a€e Z,s059€ 8
Associativity:

54 3% (5.“: . 5:) = 5é x 5h+r- = 5r:+|’:-+r'

(54 x 5.‘:} % 5¢ = 5u+h x 5¢ = 5u+b+¢-

So 52x (52 % 5 =(5° x 5% % 57 fev all

a, b, ¢ € Z, so associativity holds.

Hence (S, x) forms a group.

b i 52(4 % 52#} — 52(a+b} 2o Tis ClOE)ﬁd.

24

59 = 520 50 identity element exists.

5-2a = 524 50 inverses exist in T.

Associativity holds in S so must hold in T.

So (T, x) is a subgroup of (§, x).

ii The element 5% is not a member of U, so
U has no identity element.
U does not form a subgroup of (5, x).

Sh=1

Problem-solving

Associativity asserts a relationship between
3 fixed elements in a set. If T'is a subset of
S, then any 3 elements of 7" must also be
elements of S. So if associativity holds in S,
then it must also hold in T
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You can use the following rule to find subgroups of finite groups quickly.

® Let G be a group and H a finite non-empty m Part bii in Example 22 illustrates
subset of G. Then, H is a subgroup of G if that this result does not necessarily hold for

H is closed under the operation of G. infinite subsets.

The set S = {0, 1, 2, 3, 4, 5, 6, 7} forms a group under addition modulo 8.

Find two nontrivial proper subgroups of (S, +g).

2 4 ¢ 1 3 5 7
2 & 1 3 5 7 Delete rows and columns from the Cayley
table. If you can leave a Cayley table which is
4 o113 5 7 1 closed (i.e. the entries in your remaining rows
c sls 7 1 3 and columns are only those elements in the
corresponding row and column headings) then it
g 2 =#|7 1 & 5 will represent a subgroup.
111 &8 & 7 2 4 & ©
3|08 &8 7V 9 4 & B 2
5|8 7 1+ & & 0O 2 4 Problem-solving
% 4 & B @© B a & Any subgroup must contain the identity element.
There are two possible subgroups:
A=10 2. 4, 6} and B =10, 4). m Bisalsoa Sl.lbngILIp of 4.

In the previous example, you can see that the subgroup {0, 2, 4, 6} is generated by the element 2, and
the subgroup {0, 4} is generated by the element 4. This illustrates one method that can be used to
find subgroups.

® If Gis a finite group, then any element m The converse of this result is not
true: not every subgroup of G can be generated
by an element of G. Only cyclic subgroups are
generated in this way.

a € G generates a subgroup of G,
written (a).

You can also use Lagrange’s theorem to make
deductions about subgroups.
= Lagrange’s theorem states:

@ You can quote this theorem by name in your

If H is a subgroup of a finite group G, then examination. You do not need to be able to prove it.

|H | divides |G|.
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Theset G=1{1,2,4,5, 8,10, 11, 13, 16, 17, 19, 20} forms a group under multiplication modulo 21.
a Find the elements in the subgroup of (G, x,,) generated by the element 5, and state its order.

b Explain why (G, x,,) has no subgroup of order 5.

a

52 =, 4 5x5=25=4 (mod 21)

5=, 20

St=5 18 54=53x 5=100 = 16 (mod 21)

5% =, 17

S8 =p 1 You can write the subgroup as the set of elements
So the subgroup (5) C (G, %,,) consists {1, 4,5, 16, 17, 20} or in terms of its generator, as
of the set {1, 4, 5, 16, 17. 20L (5).

The order of {5} is 6.

The order of the group is 12, and 5 does L There are 6 elements in the underlying set.

not divide 12, so by Lagrange’s theorem
there can be no subgroup of order 5.

Exercise @

1 Theset{1,2,4,5, 7,8} forms a group under multiplication modulo 9. Find:

2

26

a the order of the group
b the order of each element in the group

The Cayley table for the Klein four-group is given below

* |l e a b ¢

e|le a b ¢
ala e ¢ b

bl b ¢ e ua

¢c|lc b a e

a Write down the order of each element.
b Hence state, with a reason, whether the group is cyclic.

The set {0, 1, 2, 3, 4, 5} forms a group under addition modulo 6. Find:

a the order of the group (1 mark)
b the order of each element in the group (3 marks)
¢ a subgroup of order 3. (1 mark)
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4 The operation  is defined on the set H, where .lol1l2lals]e
H=1{0,1,2,4,56} byxey=x+y+2xy(mod7)
a i Complete the Cayley table shown to the right. > :
ii Show that (H, ) is a group. You may assume that 1 4
the associative axiom is satisfied. (6 marks) 2
b Find: 4 0|2
i an element that generates (1, o) 5
ii a subgroup of order 3 6 1
iii a subgroup of order 2 (5 marks)
Theset U= {1,2,3,4,5,6.7,8,9, 10} forms a group under multiplication modulo 11.
a State the order of (U, x,;), and hence write down the possible orders of its proper
subgroups. (2 marks)
b Show that U is cyclic and write down its generators. (5 marks)
¢ Find all the proper subgroups of (U, x,,) (4 marks)

The integers together with addition form the group (Z, +). State, with reasons, which of the
following sets form subgroups of (Z, +) under the operation of addition.

a Z* b {2k:keZ} c R d {-1,1}

The set S=1{1,3,7,9,11, 13,17, 19} forms a group under

multiplication modulo 20. Oneof the

a Explain why S cannot have a subgroup of order 3. (1 mark) three subgroups cannot
b Find the order of each element of S. (3 marks) be generated by a single
element of S.

¢ Find three different subgroups of S, each of order 4. (4 marks)

The Cayley table shows the action of a binary ¢ |lm B ¢ F &

operation * on the set S= {a, b, ¢, de, |, g}. g

a Show that the set G = {a, b, ¢} forms a group a \a b ¢ d e f ¢

under #. You may assume that the associative b|bh ¢ a e f g d
law is satisfied. bt J

b S contains 7 elements, and the order of g is 3. == = / 4

What can you deduce about S from this d | d e [f g a b ¢

information? Give a reason for your answer.

e |e f g a d ¢ b

f |l f g d b ¢ e a

e ¢ b a f
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EP) 9

@

@ 13

®) 14
@ 15

EP) 16
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The set C,, of non-zero complex numbers ) .
forms a group under complex multiplication €. 1800L ABRE 50 Yol musL shoy
) ’ that S is closed, and that it contains inverses

Srowrithatthaser 8 ={z €lq0 e = 1 ot and an identity element. You can assume

points formed l?y the:unit circlean-the associativity as you are told that C_; is a group.
complex plane is a subgroup of C,. (5 marks)

A finite group contains distinct elements x and y. Given that x° = y2 and |x| = 10, find:

a |x? (1 mark)
b ) (1 mark)
c |y (1 mark)
d |y (1 mark)

Let G be a group with |G| = p, where p is a prime number. Explain why:
a G must be cyclic

b every element of G except the identity must generate G.

Let G be a finite group, and x be an element of the group of order 4. State, with reasons,
whether each of the following statements is true or false.

a x is the identity element b x is self-inverse

¢ x2is self-inverse d 7 is self-inverse

e |G|=4k ke Z+* f x generates a subgroup of order 4
g G cannot be a cyclic group h xt=e

i x=% i x% hasorder 4

k x? has order 4

A group H has order 8.

a State the possible orders of subgroups of H. (2 marks)
Given that H is the group formed by the set {0, 1, 2, 3, 4, 5, 6, 7} under addition modulo 8,
b find subgroups of each of the orders given in your answer to part a. (4 marks)

Prove that if G is a group with |G| = p?, where p is a prime number, then G must have a
subgroup of order p.

@ is the group formed by the set of non-zero rational numbers under multiplication.
State, with reasons, which of the following sets form subgroups of @*.

a Z,, (the non-zero integers) b {x:xe€Q, x>0}

¢ a1, 1} d R, (the non-zero real numbers)
e {3:kez} f {1}

g {(x:xe@, x<0} h {x:xeQ, x<0}u{l}

The set of real-valued non-singular matrices forms a group under matrix multiplication.

) _3) generates a finite subgroup of this group, and state the order

Show that the matrix (_3
of this group. (4 marks)
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17 S, is the group of all possible permutations of 4 elements under the operation of composition.

2
a Show that the permutation (} :1 ; g) generates a subgroup of S, of order 3. (3 marks)

b Find a subgroup of S, of order 2. (2 marks)

® 18 The rigid symmetries of a regular hexagon A BCDEF form a group under the operation of
composition. This group contains the element p representing a reflection in the line through A
and D, and the element ¢ representing a rotation through 60" anticlockwise about the centre of
the hexagon.

: B A B
A)
F c F C
D
E \ E D

a Write down the order of p and the order of ¢.
b Construct a Cayley table for the subgroup generated by p

¢ Describe the effect of the transformation ¢2, and write down the elements of the subgroup
generated by ¢ in terms of ¢.

Challenge

1 Let G be agroup and H be a finite non-empty subset of G. m Look at Example 18 for
Given that H is closed under the group operation of G, prove that

a clue about how to begin.
His a subgroup of G.

2 Consider a group (G, ¢) with an identity element e.
a Given that x € G has order n, state the order of xL.

Justify your answer. @ In part b, use

b Forx,y z € (G, o), prove that y = z-lxz = " = z-1xz forn € Z*. mathematical induction.

m Isomorphism

Sometimes groups defined differently can behave in the same way. If two groups contain exactly the
same number of elements, and if those elements combine under the group operation in exactly the
same way, then the two groups are isomorphic. Consider the following two groups:

2 1 2 B 1L 2 3 1. 2 3 — ’
. r-(l 5 3),0:_(2 3 1) and,ﬂ_(3 1 2)underccamposmonofpermutatmns

e {0, 1, 2} under addition modulo 3
The Cayley tables for these two groups are:

o |li a B - 1 2
i1 o 3 00 1 2
ala A i 1(1 2 0
B3 i «a 22 0 1
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B You can show that the elements of the two groups behave the same under the group operation by
setting up a one-to-one function that maps elements of one group onto elements of the other:

f(i)=0,fla)=1and f(3) =2

You can see from the Cayley tables that this function preserves group operations. For example,
acfF=iand1+2=0

So fe) + f(3) =f(awe ) —————— Becausef(i)=0

This technique allows you to formally define

group isomorphism: @ If two groups are isomerphic then they
= Two groups (G, =) and (H, <) are isomorphic are considered to be exactly the same for the
if there exists a mapping f: G = H such purposes of group theory.
that:
« f maps all of the elements of G onto all m If (G, ») and (H, *) are isomorphic
of the elements of H you write G = H. The function fis called an

isomorphism from G to H. Its inverse f~! would
be an isomorphism from H to G.

« fis one-to-one
« f preserves structure: f(a = b) = f(a) - f(b)

Because the group operation is preserved, it makes no difference whether you apply the function
before or after combining elements:

Sla = b)=f(a) - f(b)

Let (G, *) and (H, ») be isomorphic groups with identity elements ¢ and e, respectively, and let
f: G — H be an isomorphism from G to H.

Prove that f(e;) = ey.

fleg * eq) = fleg) = fleg) By the definition of an isomorphism

= fleg) = fleg) » fleg) D,
] G=tg

— F(ﬁ,’c‘,‘) a (:‘:H = F((’(;} a F("‘(.r')

) ) » f(e(,-) 1= H
= (fleq))™" o fleg) o ey = (fleg))™ o fleg)  fleg)

= ey = fleg) Cancel by left-multiplying by the inverse of f(eg).
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Groups

B m |f (G, =) and (H, o) are isomorphic groups with identity elements ¢, and ¢, respectively, and
f: G — H is an isomorphism from G'to H then, foralla € Gand n € Z,

* flec)=en @ Group isomorphisms preserve identities,

o fla?) = (f(a))? inverses, and the order of elements.

o f(a") = (f(a))” - Exercise 2D, Q2
® Group isomorphisms also preserve order and subgroups:

* |G =|H]

« If G has & elements of order n, then H has k elements of order n.

» If G has k subgroups of order n, then H Problem-solving

has k subgroups of order n. If G has an element of order |G| then H has an
« If Jis a subgroup of G, then H has a element of order |H|. In other words, if G is cyclic,
subgroup isomorphic to J. then H is cyclic.
Example @
(G,*x)la b ¢ d (H,o)|1 3 5 7
The Cayley tables for two isomorphic a |b a d ¢ 1 1 3 5 7
groups G and H are shown to the right. b 4 p 3 11 7 5
a State the identity element of each group. 3 & & 5 o 5 5 7 1 3
b Describe an isomorphism from G onto H. i le a @ - 7 5 3 1
a Ingroup G, b is the identity. | The row corresponding to the identity matches
In group H, 11s the ider‘.tity.J the top row.
b f(b) =1 W You know that the identity element in G must
Ha) = 3 map to the identity element in H, so f(h) = 1. Try
fe) =7 other mappings until you find one that preserves
i the structure of the Cayley table.
(il =5 h f the Cayley tabl

Example @

G and H are cyclic groups with |G| = |H|. Prove that G = H.

G and H are both cyclic, so they both contain
You can use the generators of each group to

define an isomorphism between the two groups.
Once you have defined the mapping, you need to
f maps all elements of G to all elements of H show that it is an isomorphism.

generators, g and h respectively.
Define a mapping t: G — Has f{g) =W forr€ Z. ——

g is a generator of Gso {g" : r € Z} is exactly
the elements of G.

his a generator of Hzo {h" : r € Z} is
exactly the elements of H.
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B f is one-to-one
If i/ = h* then j =k (mod n) = g/ = g*
So f(g) = H(g") = g/ = g

If you need to show that a mapping is one-to-one,
’7 it is sufficient to show that f(a) = f(h) = a=b.

Problem-solving

The result proved in Example 27 means that
there is only one cyclic group of any given order.
If you need to specify an isomorphism between
cyclic groups you should find generators for each

f preserves structure
flglo gh) =fg/ ) = W+¥ =W o h* =1(gl) - f(g")
Seo fis an isomerghism from G onto H.

In Example 26, the elements in G were written in

the Cayley table in a different order to the

elements in H. This can make it hard to spot
group isomorphisms from Cayley tables, 11
especially with larger groups.

You can find isomorphisms between finite

groups by classifying all possible groups of a
given order, and considering their properties.

In your examination you will only need to consider
isomorphisms of finite groups of order 8 or less.

group and map corresponding powers of each
generator onto each other:

{eig.- -gz.- 33:--
)

]
d d:

fech e, P, 0

m Some of these groups have special

names, which can be useful to learn. « Section 2.2

Order | Name Examples Properties
1 Z, Trivial group Only group of order 1
2 Z, {0, 1} under +, Only group of order 2
3 7" {0, 1, 2} under +, Only group of order 3
4 Z; {0, 1, 2, 3} under +, Cyclic group of order 4
Klein four- | Symmetry group of a rectangle Only non-cyclic group of order 4
group (K,) Every element (except the identity)
has order 2.
Zs {0,1, 2,3, 4} under + Cyclic group of order 5
6 7 {0,1, 2,3, 4 5} under + Cyclic group of order 6
S5, Dy Set of all possible permutations of | No element of order 6
3 elements, symmetry group of an
equilateral triangle.
7 Z4 {0,1,2, 3, 4,5, 6} under +; Cyclic group of order 7
8 Zg {0,1,2,3,45,6, T} under +4 Cyclic group of order 8
Dy Symmetry group of a square No element of order 8
Exactly 2 elements of order 4
ZxZ; No element of order 8
Exactly 4 elements of order 4
T RT % T No element of order 8
Every element (except the identity)
has order 2.
Quaternion No element of order 8
group Exactly 6 elements of order 4
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B From the table above, there are two different
groups of order 4, two different groups of order
6, and five different groups of order 8. In each
case, the orders of the elements of each group
are different.

B Groups of order 8 or less can be classified
entirely by the orders of their elements.

The group G consists of the elements ( [1} ?) (
of matrix multiplication.

your answer.
a Orders of elements in G

o 9

(& )-8 =( &) =69
502 9) 7 o) (o 2

each have order 2.

) is the identity element so has order 1.

2

5o G is the Klein four-group.

Orders of elements in H

1 is the identity so has order 1.
37 =,

these elements have order 2.

¢ 52 =, N1 =,.132=,. 9 so none of
However, 3% =, 5% = 119 =, 134 = 1
So 3, 5, 11, 13 all have order 4.

Te=e 982 158 =,

So 7, 9 and 15 all have order 2.

If H has a subgroup isomorphic to G then
it must be K=1{1, 7, 3, 15}

Check that K=1{1, 7, 2, 15} is a subgroup of H:
TXPEp DT =16
TRID= 15X 7 =9
IxN15=15%9=,7
Pme 9= 152 = ]

Kis closed under multiplication module 16,

s0 it is a subgroup of H.
Kis also the Klein four-group, so K = G i
and K is a subgroup of H as required.

0 -1
=

Groups

m The names of the groups of order 8 are

given here for completeness. You do not need to
know these names for your exam.

m For groups of order 16 or greater, it is

possible to find non-isomorphic groups which
have exactly the same numbers of elements of
each order.

), ([1} é) and (_Ol _OI) under the operation

Theset H={1,3,5,7,9, 11, 13, 15} forms a group under multiplication modulo 16.
a Show that H contains a subgroup that is isomorphic to G.
b Determine whether H is isomorphic to the symmetry group of a square, giving reasons for

Problem-solving

You will be able to solve many problems about
group isomorphisms by finding the orders of the
elements in each group.

G has no element of order 4, so it is not cyclic.
The only non-cyclic group of order 4 is the Klein
four-group.

The order of an element in a subgroup must

be the same as its order in the group. Since the
Klein four-group does not contain an element of
order 4, none of the elements of order 4 could be
contained in a subgroup isomorphic to it.

H is a finite group so if K'is a subset of H which
is closed under the group operation, then Kis a
subgroup of H.

K is a group of order 4 under x4 and has three
elements of order 2, so it is the Klein four-group.
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34

B b The symmetry group of a square, Da.

consists of the following elements:

\ Write out the elements of the group, and state
the order of each element.

Identity (order 1) Rotation 20° (order 4)

A clockwise rotation of 270° is the same as an
anticlockwise rotation of 90°. You would need to
perform this operation 4 times to get back to the
original square (the identity).

Rotation 160° Rotation 270°
(order 2) (order 4)

|

I

: e e b e e e Al N

|

/,’, \\\
I,l' \\\\
I,, \\\

‘ m Make sure you show your working

by stating the order of each element, and write a
clear conclusion based on your working.

Four different reflections (each of order 2)

So Dy contains exactly 2 elements of order 4.

H contains 4 elements of order 4. ) ”
Isomorphic groups must contain exactly the same

number of elements of each order.

so H is not isomorphic to Dg,

Exercise @

(G, *) and (H, ) are isomorphic groups, and f: G — H is an isomorphism from G to H.

Prove that, foralla € Gand n € Z*, "
Problem-solving
a fla™') = (fla))™

Use mathematical induction for part b.
b f(a") = (f(a))

The set G= {1, -1, i, —i} forms a group under complex multiplication.
The set H= {0, 1, 2, 3} forms a group under addition modulo 4.

a Draw Cayley tables for each group. (4 marks)
b By defining an isomorphism, show that G = H. (4 marks)



Groups

3 Theset G={1, 3,5, 7}.

E/P a Show that (G, x;) is a group. (5 marks)
b Find all solutions in G to the equation 7 » x e 3 = y. Express your answers in the
form (x, p). (3 marks)
The set H=:{1, 3, 5,7, 9}.
¢ Show that H does not form a group under multiplication modulo 10. (3 marks)

d Create another set, K, by removing one element from H so that (K, x,) is a group. (1 mark)

e Determine, with reasons, whether (G, xg) and (K, x,,) are isomorphic. (2 marks)

@!P 4 Consider a group G, of order 4, which has 4 distinct elements ¢, a, b and ¢, where ¢ is the
identity.
a Explain why ab cannot equal a or b. (3 marks)

b Given that ¢ is self-inverse, construct two possible Cayley tables for G.
Your Cayley tables should show two groups which are not isomorphic. (4 marks)

The set H= {1, -1, i, —i} forms a group under complex multiplication.

¢ Determine which one of the groups defined in your answer to part b is isomorphic
to H, and specify an isomorphism between {a, b, ¢, ¢} and {1, -1, i, —1}. (6 marks)

@P 5 Theset G={1,7,11,13,17,19, 23, 29} forms a group under multiplication modulo 30.

a Find the order of each element Problem-solving

of (G, X30)- A HRIrkes) To describe a group of order 4 you should state

b Find three distinct subgroups of (G, x3), whether it is the cyclic group or the Klein four-
each of order 4. Describe each of these group. Alternatively, you should fully specify the
subgroups. (4 marks) orders of each of its elements.

The group Dy is the symmetry group of a square.

¢ By considering the elements of Dy corresponding to reflections, or otherwise,
show that G is not isomorphic to Dy (4 mark)

@!B 6 The group G=1{1, 2, 3,4, 5, 6} forms a group under multiplication modulo 7.

a Find the order of each element of (G. x,). (4 marks)
b List all the proper subgroups of (G, x,) and describe each group. (3 marks)
The group H = {1, 5,7, 11, 13, 17} forms a group under multiplication modulo 18.

¢ Specify an isomorphism between G and H. (4 marks)

@ID 7 a Given that G is a group of order p, where p is a prime number, explain G must be
isomorphic to the cyclic group of order p. (3 marks)

The set G = {1, 7, 16, 20, 23, 24, 25} forms a group under multiplication modulo 29.

The set H = {eﬁ: k € {0,1,2,3.4, 5,6}} forms a group under complex multiplication.

b Specify an isomorphism between G and H. (3 marks)
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8 The elements of G are the complex numbers e *, where k =0, 1, 2, 3,4, 5, 6, 7.
E/P G forms a group under complex multiplication.
Theset H=1{1,7,9, 11,17, 19, 25, 27} forms a group under multiplication modulo 32.
Specify an isomorphism between (G, x) and (H, x3,). (4 marks)

@a’P 9 Theset G= {([1) ?)(_01 _01)(_11 _]2)(_11 _21 )} forms a group under matrix multiplication.

The set H= {1, 5,7, 11} forms a group under the operation of multiplication modulo 12.
Determine whether G and H are isomorphic, showing your working clearly. (5 marks)

@IP 10 The set G consists of eight 2 x 2 matrices:

a={lo 13 Mo GG oG olo DHE THo S
0 NI 90 171 0P\ 0/e 1P-1 010 —i
G forms a group under matrix multiplication.
a Find the order of each element in this group. (4 marks)
b Explain why this group cannot have a subgroup isomorphic to the Klein
four-group. (3 marks)
Theset H={1,3,7,9,11, 13, 17, 19} forms a group under multiplication modulo 20.
¢ Determine whether G is isomorphic to H, showing your working clearly. (3 marks)

Challenge
'a b) ca,be,de (0,1}, ad - be # O] consists of all

The set S = [(
¢ d.
non-singular 2 x 2 matrices with elements 0 or 1.

a i Listall the elements of S.

The operation x; is defined as matrix multiplication modulo 2.
Matrices are multiplied in the normal way, and each element is
replaced with its least residue modulo 2.

ii Show that S forms a group under x,. You may assume that the
associative law is satisfied.

iii Describe one other group which is isomorphic to this group.
Theset T= {(a 2’) ca,be,de{0,1,2},ad-bec # 0 (modB)] forms a
¢
group under matrix multiplication medulo 3.

b i Find the order of this group.

il Find the inverse of the element (i '1).
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Mixed exercise o

Groups

1 A group G, under the operation of multiplication, contains distinct elements «. b and e, where e

is the identity element.
a Show that ab® # a’b.

b Given that ab’ = ba, prove that ab # ba.

@ 2 Theset G=1{1,3,5,9, 11, 13} forms a group under multiplication modulo 14.
Copy and complete the following Cayley table for this group.

xul 13|59 11]13
9

9 11

11 5

13 1

(1 mark)
(3 marks)

(3 marks)

3 Theset S=1{1,3,5,7,9, 11, 13, 15} forms a group under the operation of multiplication

modulo 16.

a List the order of each element in (S, x,4).

b State, with a reason, whether this group is cyclic.

¢ Explain why (S, x;4) can have no subgroup of order 3.

d Find a cyclic subgroup of (S, x,,) and state a generator of this subgroup.

4 a Describe the linear transformation represented by the matrix

2 V2
M=l &
a2
2 2

A group (G, o) is generated by M, where o represents matrix multiplication.
b Write down |G|, and write the elements of G in terms of M.

¢ Write in the form (g g)
i M1

ii two further generators of G.

d Find a subgroup of (G, ¢) of order 4, giving each element in terms of M.

(2 marks)
(2 marks)

(1 mark)
(3 marks)

(2 marks)

(4 marks)

(2 marks)
(2 marks)
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A mattress manufacturer suggests that customers “flip’ their mattress regularly so that it wears
out evenly. The following instructions are provided:

SOOI

Option 4 Option B Option C Option D
Rotate 180° Flip around short axis Flip around long axis No change (not recommended)

The operation « is defined on {4, B, C, D} as ‘followed by’, so that, for example, C o 4 means
‘flip around long axis then rotate 180°’.

a Complete the Cayley table for these four options, Secantandi
under the operation of combination of transformations, e. . P
(3 marks) o |A| B | C|D
b Assuming associativity, show that these four options A
form a group under . (3 marks) E
¢ State, with a reason, whether this group is cyclic. (2 marks) §- 4
g C
=
D

The operation » is defined on the set
G=1{0,1,2,3,4,5,6, 7} v 1 el &3 &[T
by 0 112
Xey=Xx+7y—2xy(mod8) 1 0
a i Copy and complete the Cayley table shown. >
ii Show that (G, o) is a group. You may assume
that the associative axiom is satisfied. 3 510
(6 marks) A
b Find:
. ; : 5 0|7
1 anelement a € G, other than the identity
such that @ = a™' 6 3
ii asubgroup of G of order 4. (5 marks) 7 2 | 5
¢ Show that (G, <) is not cyclic. (3 marks)
a Explain why the set of real-valued 2 x 2 matrices do not form a group under matrix
multiplication. (1 mark)

b Show that the set of non-singular real-valued 2 x 2 matrices form a group under matrix
multiplication. You should state the identity element, and give the inverse of the general

. f(a b o g , ,
2 x 2 matrix (c a’)' You may assume that the associative axiom is satisfied. (5 marks)



Groups

8 The binary operator multiplication modulo 18, denoted by o, is defined on the set

G=1{2,4,8,10, 14, 16}
a i Copy and complete the Cayley table below.

o | 2|4 |8 |10|14]16
2 8 2
4 |8 (16144 |2 ]10
8 14 8
1024 |8 |10(14]16
14 2 14
16 10 16
ii Show that (G, <) is a group. You may assume that the associative axiom is
satisfied. (6 marks)
b Show that the element 4 has order 3. (2 marks)
¢ Find an element which generates (G, ), and write each element in terms of this
generator. (3 marks)
d Set H is defined by {x2: x € G}. Show that (H, ¢) is a subgroup of (G, »). (2 marks)
9 a Show that the set S = {0, 1, 2, 3, 4, 5} under addition modulo 6 is a group. (5 marks)
b Show that the group is cyclic and write down its generators. (3 marks)
¢ Explain why (S, +¢) cannot contain a subgroup of order 4. (1 mark)
d Find the subgroup of (S, +) that contains exactly three elements. (1 mark)

10 Consider the set S of matrices of the form (f y) # (O 0), where x, y € R.

y X 0 0
a Show that S forms a group under matrix multiplication. You may assume that the associative
law is satisfied. (5 marks)
The set R consists of matrices of the form ({"_}C ?) where x € R, x # 0.
b Show that Ris a subgroup of S. (5 marks)
The set T consists of matrices of the form (_ C;) wherey e R, y #0.
¢ Show that 7'is not a subgroup of S. (2 marks)

'§ 11 Theset G=1{1,5,7,11,13, 17,19, 23} forms a group under multiplication modulo 24.

(E/P)

a Find the order of each element in this group. (4 marks)
b Explain clearly why this group cannot contain a cyclic subgroup of order 4. (2 marks)

The elements of H are the complex numbers e% wherek=0,1,2,3,4,5,6,7, 8.
H forms a group under complex multiplication.

¢ Determine, with reasons, whether G =~ H. (3 marks)
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12 Groups A, B and C are defined as follows.

E/P

EP) 13

A: the set of numbers {1, 3, 7, 9} under multiplication modulo 10
B: the set of numbers {1, 2, 4, 8} under multiplication modulo 15

C: the set of matrices {(1 0),(0 1),(_1 0 ) ( ) _l)} under matrix multiplication

G NI DPAD =11 D
a Write down the identity element for each of groups 4, B and C. (2 marks)
b Determine in each case whether the groups
i 4and B ii Band C iii AdandC
are isomorphic. In each case give reasons for your answers. (5 marks)

The elements of a group G are the matrices
km

km .
COsS—— SIin——
3 3
.k km
=R LS

3 3
where k=1,2,3.4, 5, 6.
a State the order of the group and the order of each of its elements, (4 marks)

b Determine, with reasons, whether this group is isomorphic to the group of permutations of
three elements, S;. (2 marks)

Challenge

The set §, consists of all possible permutations of four objects under
composition of permutations.

a Find |S,].

b Find subgroups G C S, with each of the following properties.

40

In each case, list the elements of the subgroup in the form
a, a, a3
(!h by by b:.)
wherea;, b, € {1, 2, 3, 4}.
i Gisacyclic group of order 4

ii Gisacyclic group of order 3
i |G|=6

Find a subgroup of S, that is isomorphic to:
i theKlein four-group
ii the symmetry group of a square, D;.

Explain why S, has no subgroups that are isomorphic to:

i the cyclic group of order 6

ii thegroup G=1{1,2 4,7, 8, 11,13, 14} under multiplication
modulo 15.



Groups

Summary of key points

1

10
11

12

A binary operation on a set is a calculation that combines two elements of the set to produce
another element of the set.

An identity element of a set S under a binary operation * is an element ¢ € S such that, for
anyelementa € S,axe=exa=a.

Let S be a set and = be a binary operation on S. If an identity element e exists, and there exist
elements g, b € S such thata b = b = a = ¢, then a is the inverse of b and b is the inverse of a.

A binary operation # on a set S is associative if, forany a, b, c € S,
axbxc)=(axh)xc

If Gis asetand *is a binary operation defined on G, then (G, %) is a group if the following four
axioms hold:

» Closure:forallg,he G,axbe G

« ldentity: there exists an identity element ¢ €G, such thatforalla € G a*e=e*xa=a

- Inverses: for each a € G, there exists an inverse elementa! € Gsuchthata=*al=al*a=e¢
+ Associativity: foralla, b,ce G ax (bxc)=(a*b) *c

A Cayley table fully describes the structure of a finite group by showing all possible products
of elements of the group. When a group’s elements are displayed in a Cayley table, then:

« all entries must be members of the group

+ every entry appears exactly once in every row and every column

+ the identity element must appear in every row and column.

+ the identity elements are symmetric across the leading diagonal

+ The operation x, of multiplication modulo 7 is defined on integers a and b as the
remainder when ab is divided by n.

+ The operation +, of addition modulo # is defined on integers a and b as the remainder
when a + b is divided by n.

The symmetric group on n elements is defined as the group of all possible permutations
that can be performed on 1 objects, together with the operation of composition.

A cyclic group is a group in which every element can be written in the form &, where a is the
group generator and k is a positive integer.

If a finite group G has n distinct elements, then the order of G is x.

+ The order of an element « in a group (G, *) with identity e is the smallest positive integer k
such that a* = e.

« If (G, %) is finite with a € G, then |a| divides |G|

+ (G, %) is cyclic if and only if there exists an element a such that |a| = |G]. This element will be
a generator of the group.

Let @ be an element in a group (G, ), then:

+ if a has a finite order i, then @™ = e if and only if n|m
+ if @ has infinite order, thenx # y = a* # &

« if @* = @ with x # y, then @ must have finite order.
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13 If a nonempty subset H of a group G is itself a group under the binary operation of G, we call

H a subgroup of G.
- If H C G, then H is a proper subgroup of G.
« If HC G, then H is a subgroup of G.

14 Let G be a group and H a finite non-empty subset of G. Then, H is a subgroup of G if H is
closed under the operation of G.

15 If Gis a finite group, then any element a € G generates a subgroup of G, written (a).
16 Lagrange’s theorem: If H is a subgroup of a finite group G, then |H| divides |G|.

17 Two groups (G, #) and (H, ) are isomorphic if there exists a mapping f: G — H such that:
- f maps all of the elements of G onto all of the elements of H
+ fis one-to-one
- f preserves structure: f(a * b) = f(a)  f(b)

18 If (G, *) and (H, o) are isomorphic groups with identity elements ¢ and ej; respectively, and
f: G — H is an isomorphism from G to H then, foralla € Gand n € Z,
e fleg) =ey
« fla) = (fl@)™
« f@) = (f(a)"

19 Group isomorphisms also preserve order and subgroups:
- |Gl = [H|
» If G has k elements of order n, then H has k elements of order .
- If G has k subgroups of order n, then H has & subgroups of order n.
« If Jis a subgroup of G, then H has a subgroup isomorphic to J.

20 Groups of order 8 or less can be classified entirely by the orders of their elements.
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