5 Surfaces and partial differentiation

In this chapter you will learn how to:

- work with functions of two variables
- sketch sections and contours
- find first and second partial derivatives
- find the coordinates and types of stationary points in 3-D.
- nind the equation of the tangent plane to a 3-D curve.

Section 1: Three-dimensional (3-D) surfaces

Key point 5.1

In three dimensions (3-D) a surface is described by the form:

z = f(x, y) or g(x, y, z) = c, where c is a constant,

i.e. the height z above the x-y plane is found directly or indirectly from the given equation. Conventionally, the x-y plane is horizontal and the z-axis is vertical (using the right-hand system).

Plotting all possible points gives the surface.

Sections: these are cross-sections of the surface for defined values of x or y:

i.e. graphs of z = f(a, y) or z = f(x, b) for specific values of a or b.

Contours: these are effectively a plan view of the surface looking from above the x-y plane for defined values of z (as on an Ordnance Survey map):

i.e. graphs of c = f(x, y) for specific values of c.

Multi-variable functions: it is possible to have more variables such as w = f(x, y, z), where w is a variable.

EXERCISE 5A

In this exercise you are encouraged to use graph plotting software or a graphical calculator.

- For the surface $z=x^2+y^2$:
 - **a** on separate diagrams, sketch the sections $\mathbf{i} \; z = x^2$ and $\mathbf{ii} \; z = y^2$
 - **b** draw the contours for $x^2 + y^2 = c$ for c taking values 1, 4, 9 and 16.
- For the surface $z = x^2 + 9y^2$:
 - **a** on separate diagrams, sketch the sections **i** for y=0 and y=1 **ii** for x=0 and x=2
 - ${f b}$ draw the contours for $x^2+9y^2=c$ for c taking values 0,1,4,9 and 16.
- A surface has equation $z = x^2 y^2$.
 - ${f a}$ Sketch the section with y=2 and state the coordinates of the points of intersection of this section with the plane z=0.
 - ${f b}$ Sketch the section with x=4 and state the coordinates of the points of intersection of this section with the plane z=7.
 - **c** Draw the contours for $x^2 y^2 = c$ for c taking values 0, 1, 4, 9 and 16.
- A surface has equation $z = (x + y)^2$.
 - a Sketch the sections with y=0, y=1 and y=-3. Where the sections intersect the x-y plane find the coordinates of the points
 - **b** Draw the contours for $(x+y)^2 = c$ for c taking values 0, 1, 4, 9 and 16.

- A surface has equation $z = (x y)^2$.
 - a Sketch the sections with x = 0, x = 2 and x = -1. Where the sections intersect the plane z = 4 find the coordinates of the points of intersection.
 - ${f b}$ Draw the contours for $(x-y)^2=c$ for c taking values 0,1,4,9 and 16.
- A surface has equation $z = (x^2 y^2)^2$.
 - a Determine whether the point (3,1,64) lies on the surface.
 - **b** Find whether the point (5,4,80) is on, above or below the surface.
 - **c** Draw the contours for $(x^2-y^2)^2=c$ for c taking values 0,1,4,9 and 16.
- A surface S has equation $z = 25 (x^2 + y^2)$.
 - **a** On separate diagrams, sketch the sections **i** for y=0 and **ii** for x=4.
 - **b** Find a point on S which lies in the x y plane.
 - **c** Draw the contours for $25 (x^2 + y^2) = c$ for c taking values 0, 1, 4, 9 and c
- 8 For the surface $z = \sqrt{x} + \sqrt{y}$:
 - **a** on separate diagrams, sketch the sections $\mathbf{i} \; z = \sqrt{x}$ and $\mathbf{ii} \; z = \sqrt{y}$
 - ${f b}$ draw the contours for $\sqrt{x}+\sqrt{y}=c$ for c taking values 1,4 and 9.
- 9 For the surface $z = x^2y^2$:
 - ${f a}$ on separate diagrams, sketch the sections ${f i}$ for y=1 and ${f ii}$ for x=1
 - $\mathbf{b} \quad \text{draw the contours for } x^2y^2 = c \text{ for } c \text{ taking values } 1,4,9 \text{ and } 16.$
- 10 For the surface $z = x^2 + y^3$:
 - **a** on separate diagrams, sketch the sections **i** for y=3 and **ii** for x=4
 - ${f b}$ verify that the two sections in ${f a}$ intersect where x=-4 and y=3 and state the coordinates of the point on the surface of this intersection
 - ${f c}$ draw the contours for $x^2+y^3=c$ for c taking values 1,4,9 and 16.
- For the surface $z = e^{x+y}$:
 - ${f a}$ on separate diagrams, sketch the sections ${f i}$ for y=0 and ${f ii}$ for x=0
 - ${f b}$ draw the contours for $e^{x+y}=c$ for c taking values 1,4,9 and 16.
- 12 A surface S has equation $z = x^2 + xy + y$.
 - **a** Draw sections of S for y = 0, y = -2, y = 2.
 - ${f b}$ State which of the sections in ${f a}$ intersect the plane z=0.
- 13) For the surface $z = xe^y$:
 - **a** on separate diagrams, sketch the sections **i** for y=0 and **ii** for x=1
 - ${f b}$ draw the contours for $xe^y=c$ for c taking values 1,3 and 5.
- 14 For the surface $z = \ln(xy)$:
 - **a** on separate diagrams, sketch the sections **i** for y=1 and **ii** for x=1
 - ${f b}$ draw the contours for $\ln(xy)=c$ for c taking values 0,1 and 4.
- 15 A surface S has equation $z = x^3 + 3xy y^2$.
 - **a** Sketch the sections of S when x=3 and x=-3.
 - **b** State which of the sections in **a** intersect the plane z = 0.
 - ${f c}$ Use a graph plotting package to sketch the contour of ${f S}$ when z=0.
- The surface S of a three-dimensional object has equation $z = x^3 + 3x^2y + y^2 + 3$.
 - **a** State the equation of the section of S for which y=-1 and sketch this section.
 - ${f b}$ Find the coordinates of the points where the section intersects the plane z=0.
 - c Find the coordinates of the turning points on this section of s.

- **a** on separate diagrams, sketch the sections when $\mathbf{i} \; y = \frac{\pi}{2}$ and $\mathbf{ii} \; x = \pi$
- ${f b}$ draw the contours for $\sin(x)+\sin(y)=c$ for c=0
- ${f c}$ use a graph plotter to draw the contours for $\sin(x)+\sin(y)=0.5$ and $\sin(x)+\sin(y)=1.$
- For the surface $\frac{x^2}{4} + \frac{y^2}{9} + \frac{z^2}{16} = 25$:
 - a on separate diagrams, sketch the sections i $\frac{x^2}{4} + \frac{z^2}{16} = 25$ and ii $\frac{y^2}{9} + \frac{z^2}{16} = 25$
 - **b** draw the contours for $\frac{x^2}{4} + \frac{y^2}{9} + \frac{c^2}{16} = 25$ for c taking values 4, 12 and 16.
- For the surface $z^2 = \frac{x^2}{16} + \frac{y^2}{9}$:
 - ${f a}$ on separate diagrams, sketch the sections ${f i}$ for y=0 and ${f ii}$ for x=0
 - ${f b}$ draw the contours for $c^2=rac{x^2}{16}+rac{y^2}{9}$ for c taking values 2,3 and 4 .
- For the surface, $z^2=rac{x^2}{4}+rac{y^2}{9}-1$:
 - **a** on separate diagrams, sketch the sections **i** for y=0 and **ii** for x=0
 - **b** draw the contours for $c^2 = \frac{x^2}{4} + \frac{y^2}{9} 1$ for c taking values 2, 3 and 4.
- 21 For the surface $z^2 = \frac{x^2}{4} + \frac{y^2}{9} + 1$:
 - **a** on separate diagrams, sketch the sections with **i** y=0, y=3 and y=6 and **ii** x=0, x=1 and x=2
 - ${f b}$ draw the contours for $c^2=rac{x^2}{4}+rac{y^2}{9}+1$ for c taking values 0,1,4,9,16.

Section 2: Partial differentiation

(A) Key point 5.2

If a 3-D surface has equation z = f = f(x, y), then:

 $\mathbf{f}_x = \frac{\partial \mathbf{f}}{\partial x} \Rightarrow \text{ differentiate f with respect to } x, \text{ assuming } y \text{ is constant }$ which gives the rate of change on the surface of z as x changes $\mathbf{f}_y = \frac{\partial \mathbf{f}}{\partial y} \Rightarrow \text{ differentiate f with respect to } y, \text{ assuming } x \text{ is constant }$

 $\mathbf{f}_{xx} = \frac{\partial^g}{\partial x} \left(\frac{\partial \mathbf{f}}{\partial x} \right) = \frac{\partial^2 \mathbf{f}}{\partial x^2} \Rightarrow \text{differentiate } \mathbf{f}_x \text{ with respect to } x \text{, assuming } y \text{ is constant}$

 $f_{yy} = \frac{\partial}{\partial y} \left(\frac{\partial \mathbf{f}}{\partial y} \right) = \frac{\partial^2 \mathbf{f}}{\partial y^2} \Rightarrow \text{ differentiate } \mathbf{f}_y \text{ with respect to } y \text{, assuming } x \text{ is constant}$ $\mathbf{f}_{xy} = \frac{\partial}{\partial x} \left(\frac{\partial \mathbf{f}}{\partial y} \right) = \frac{\partial^2 \mathbf{f}}{\partial x \partial y} \Rightarrow \text{ differentiate } \mathbf{f}_y \text{ with respect to } x \text{, now assuming } y \text{ is constant}$ $\mathbf{f}_{xy} = \frac{\partial}{\partial x} \left(\frac{\partial \mathbf{f}}{\partial y} \right) = \frac{\partial^2 \mathbf{f}}{\partial x \partial y} \Rightarrow \text{ differentiate } \mathbf{f}_y \text{ with respect to } x \text{ now assuming } x \text{ is constant}$

 \Rightarrow differentiate \mathbf{f}_x with respect to y, now assuming x is constant.

Note: the mixed derivative theorem for most well-behaved, continuous functions, states that:

EXERCISE 5B

For questions 1 to 15, find **a** f_x , **b** f_y , **c** f_{xx} and **d** f_{yy} . Also show that $f_{xy} = f_{yx}$.

$$1 \qquad \mathbf{f} = x^2 + y$$

$$\mathbf{f} = (x^2 + y^2)^2$$

- $egin{array}{cccc} A & 6 & \mathrm{f} = (x^2 y^2)^{rac{1}{2}} \end{array}$
- **A** 8 $f = \sqrt{2x+1}\sqrt[3]{2y+2}$
- - $12 \quad \mathbf{f} = x^2 y^2 \ln(xy)$
 - 13 $f = \cos(x) + \cos(y)$
 - $\mathbf{14} \quad \mathbf{f} = \cos(x) \sin(y)$
- $f = e^{\sin x \cos y}$
- Given that $2z 4 = 3x^2 + 5y^2 + 4xy$, find $\frac{\partial^2 z}{\partial x^2}$ and $\frac{\partial^2 z}{\partial y^2}$ and show that $\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x}$.
- 17 If $f = x^3 + y^3 + 3xy$, show that, at the point (-1, -1, 1):
 - a $f_x = 0$
 - $\mathbf{b} \quad \mathbf{f}_{\mathbf{v}} = \mathbf{0}$
 - $\mathbf{c} \quad \mathbf{f}_{xx} < 0$
 - $\mathbf{d} \quad \mathbf{f}_{yy} < 0$
 - $\mathbf{e} \quad \mathbf{f}_{xx}\mathbf{f}_{yy} \left(\mathbf{f}_{xy}\right)^2 > 0.$
- Show, for the point (1,1,-2) on the curve $z=x^4+y^4-2x^2-2y^2$, that:
 - $a \frac{\partial^2 z}{\partial x^2} > 0$
 - $\mathbf{b} \quad \frac{\partial^2 z}{\partial x^2} > 0$
 - $\textbf{C} \quad \frac{\partial^2 z}{\partial x^2} \frac{\partial^2 z}{\partial y^2} \left(\frac{\partial^2 z}{\partial x \partial y}\right)^2 > 0$
- 19 If $f = xy\ln(x-y)$, show that, at the point (1,0,0):
 - $\mathbf{a} \quad \mathbf{f}_x = \mathbf{0}$
 - $\mathbf{b} \quad \mathbf{f}_y = 0$
 - $\mathbf{C} \quad \mathbf{f}_{xx}\mathbf{f}_{yy} (\mathbf{f}_{xy})^2 < 0$
- Given that $f = x^3 + y^3 + z^3 + 3x^2y + 3y^2z + 3xz^2 + x^2y^2z^2$, find:
 - a f
 - $\mathbf{b} \quad \mathbf{f}_y$
 - C f
 - $\mathbf{d} \quad \mathbf{f}_{xyz}$

Section 3: Stationary points

EXERCISE 5C

1 A surface S has equation $z=x^2+y^2$.

Find the coordinates and nature of the stationary point and show that it is a minimum.

- Find the coordinates and nature of the stationary point on the surface $z = 4 (x^2 + y^2)$.
- A surface S is defined by $z=x^2-y^2$. Show that the only stationary point is a saddle point.
- 4 Find the coordinates and nature of the stationary point on $z=x^3+y^3-6xy$.
- Find the coordinates of the four stationary points on $z = 3x^2y 3x^2 6y^2 + y^3$ and determine whether each stationary point is a maximum, a minimum or a saddle point.
- Show that $f(x,y) = x^4 2x^2 + y^2$ has three stationary points.

Find the coordinates of each stationary point and determine whether each is a maximum, a minimum or a saddle point.

The diagram shows a stand used in a museum display.

The surface of the stand is given by the equation $z = x^2 + y^2 - x^2y^2$. Show that the stand has four saddle points and one minimum stationary point.

Find the coordinates of all these points.

8 A modern building has a roof surface with equation:

$$z = 2x^3 - 3x^2 - 12x + y^3 - 3y.$$

- a Find the position of the highest point and the lowest point on the roof.
- b The roof has two supports placed at the saddle points. Find the coordinates of the saddle points.

A design department of the manufacturer of corn snacks produces a template of the following shape:

This surface has the equation: $z = x^3 + 3x^2y - 3y - 5$ and it has two stationary points.

Show that the coordinates of these are (-1,0.5,-6) and (1,-0.5,-4) and determine whether each point is a maximum, a minimum or a saddle point.

Show that $f(x,y) = x^4 - 2x^2 + y^4 - 2y^2$ has nine stationary points.

Verify that four of these are saddle points.

For the other five points, determine whether each is a maximum or a minimum stationary point.

- 11) Find the coordinates of the stationary point on $z=e^{xy}$ and prove that it is a saddle point.
- Given that $z=e^{x^2+y^2}$, show that there is a minimum stationary point at (0,0,1).
- A roof light has a surface given by the equation $z=e^{-(x^2+y^2)}$, for $-1 \le x \le 1$ and $-1 \le y \le 1$, where all lengths are in metres.
 - a Show that the roof light has a maximum height of $1\,\mathrm{m}$ and that this occurs at its centre.
 - $\mathbf{b} \quad \text{Sketch the section of S for which } y = 0.$
 - c Draw a contour map for S for z values 0.5, 0.25, 0.1 and 0.01.
- Standing waves in a water tank can be modelled by the equation $z = \cos(x) + \sin(y)$. Show that the surface of these waves bounded by $0 \le x \le \pi$ and $0 \le y \le \pi$ has two stationary points. Find the coordinates of these points and determine whether each is a maximum, a minimum or a saddle point.
- Find the coordinates of the stationary points on $z = xy + \ln(x^2 + y^2)$ and determine whether each is a maximum, a minimum or a saddle point.

To reduce drag the nose cone of a Formula 1 racing car looks like the one in the diagram.

Given that the equation of this surface is $z=x^2+y^2+\mathrm{e}^{xy}$, show that there is a minimum stationary point at (0,0,1).

- Show that $z = x^3 + y^3 3x 3y$ has two saddle points, one maximum stationary point and one minimum stationary point. Find the coordinates of all these points.
- 18 A surface S has equation $z=\mathrm{e}^{\sin\!x}+\mathrm{e}^{\cos\!y}.$
 - $\mathbf{a} \quad \text{Show that the } (x,y) \text{ coordinates } \left(-\frac{\pi}{2},0\right), \ \left(-\frac{\pi}{2},\pi\right), \ \left(\frac{\pi}{2},0\right), \ \left(\frac{\pi}{2},\pi\right) \text{ give stationary points on } \mathbf{S}.$
 - **b** Determine whether each is a maximum, a minimum or a saddle point.
- Show that (0,0,0) is a stationary point on $z=x^2+y^2-2kxy$ $(k^2\neq 1)$. Determine the type of stationary point depending on the values of k.
- A surface C has equation $z = \cos(x)\cos(y)$ for $-2\pi < x < 2\pi$ and $-2\pi < y < 2\pi$. Show that C has maximum turning points at $(0,0), (\pm \pi, \pm \pi)$ and $(\pm 2\pi, \pm 2\pi)$ and minimum turning points at $(0,\pm\pi), (\pm 2\pi, \pm\pi), (\pm \pi,0)$ and $(\pm\pi, \pm 2\pi)$.

A Section 4: Tangent planes

Key point 5.4

For a 3-D surface with equation z = f(x, y), the equation of the **tangent plane** to the surface at the point (a, b, f(a, b)) is: $z = f(a, b) + (x - a)f_x(a, b) + (y - b)f_y(a, b)$

The tangent plane is a 3-D version of a tangent to a curve.

EXERCISE 5D

- Show that the equation of the tangent plane to $z=x^2+y^2$ at the point (3,2,13) is z=6x+4y-13.
- A surface S has equation $z = x^2 y^2$. Find the equation of the tangent plane at the point where x = 2 and y = 3.
- Find the equation of the tangent plane to $z = x^2 + y^2 + 3x^2y$ at the point (4, -1, -31).
- Show that the point P(2,1,12) lies on the surface $z=x^3+x^2+3+y^2-2xy$. Find the equation of the tangent plane at P.
- Show that the equation of the tangent plane to $z=\left(x^2+y^2\right)^2$ at the point (2,-2,64) is z=64x-64y-192.
- Find the equation of the tangent plane to $z=3x^2+2y^3-xy+6$ at the point where x=-1 and y=1.
- Find the equation of the tangent plane to $z=x^3+y^3+x^2y^2-3x-5y$ at the point where x=2 and y=1.
- 8 Find the equation of the plane that is tangential to $z=rac{x}{y}$ at the point (4,2,2).
- 9 Find the equation of the tangent plane to $z=rac{x+1}{y-2}$ at the point where x=2 and y=4.
- A surface has equation $z=(x+1)^{\frac{1}{2}}(y+2)^{\frac{3}{2}}$. Find the equation of the plane that is tangential to S at the point (3,7,54).

- Show that the equation of the tangent plane to $z=e^{x^2+y^2}$ at the point where x=1 and y=1 is $z=e^2(2x+2y-3)$.
- Find the equation of the tangent plane to $z=y^2e^{x^2}$ at the point where x=1 and y=2.
- Show that the equation of the tangent plane to $z=\ln(x+y+2xy)$ at the point $(4,1,\ln 13)$ is $13z=3x+9y-21+13\ln 13$.
- Find the equation of the plane that is tangential to the surface $z=\cos(x)+\cos(y)$ at the point $\left(0,\frac{\pi}{2},1\right)$.
- Given that a surface S has equation $z=\cos(x)\sin(y)$, find the equation of the plane that is tangential to S at the point where $x=\frac{\pi}{4}$ and $y=\frac{\pi}{4}$.
- Show that the equation of the plane that is tangential to the surface with equation $z=x^4-4x^2y^2+y^4$ at the point (2,1) is $r \cdot \begin{pmatrix} 16 \\ -28 \\ 1 \end{pmatrix} = 3.$
- Show that the point (1,2,2) lies on the plane that is tangential to $z=xy+\mathrm{e}^x\mathrm{ln}y$ at (0,1,1).
- Determine whether the plane $r \bullet \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} = 2$ is parallel to the plane that is tangential to the surface $z = \cos(xy) + x + y 2$ at the point where x = 0 and $y = \pi$.
- Find the equation of the tangent plane to $z=\tan(x)\tan(y)$ at the point where x=0 and $y=\frac{\pi}{4}$.
- 20 A surface S has equation $x^2 + y^2 + z^2 = 50$.
 - a Show that the plane that is tangential to S at the point (3,4,5) has equation 3x + 4y + 5z = 50
 - **b** Sketch a section of S for which y = 0.
 - **c** Sketch a contour diagram for values of $z \in \{1, 3, 5, 7\}$.

Mixed practice 5

- A curve has equation $z = 4x^2 + 9y^2$.
 - a Sketch sections:

i
$$z=4x^2$$

ii
$$z=9y^2$$
.

- ${f b}$ Sketch contours for $4x^2+9y^2=c$, where c=1,4,9.
- Show that $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = 0$ for:

$$\mathbf{a} \quad z = \frac{x-y}{x+y} \text{ noting that } \frac{\partial}{\partial x} \left(\frac{u}{v} \right) = \frac{v \frac{\partial u}{\partial x} - u \frac{\partial v}{\partial x}}{v^2}$$

$$\mathbf{b} \quad z = an^{-1}rac{y}{x} ext{ noting that } rac{\partial}{\partial x} \left(an^{-1}z
ight) = rac{1}{1+z^2}rac{\partial z}{\partial x}$$

- Find the equation of the tangent plane to $4z = 25 3x^2 y^2$ at the point where x = 2 and y = 1.
- Show that the curve $z = x^2 + 2y^2 + 2x y$ has a minimum turning point at (-1, 0.25, -1.125).

- A surface S has equation $z=\mathrm{f}(x,y)$ where $\mathrm{f}(x,y)=x^3-3x^2y+3y^2.$ Show that S has a saddle point at (1,0.5,0.25).
- 6 Find the equation of the tangent plane to $z=xy^2$ at the point where x=-5 and y=1.
- It is given that $f(x,y)=\mathrm{e}^{-(x^2+y^2)}$.
 - a Show that $f_{xy} = 4xye^{-(x^2+y^2)}$.
 - ${f b}$ Find the stationary point on the surface $z={f f}(x,y)$ and explain why it is a maximum, minimum or saddle point.
 - c The surface has sections z = f(a, y), where a is a constant greater than zero. Find, in terms of a, the coordinates of the turning point of this section. Sketch this section.
- A surface has equation $z=\mathrm{f}(x,y)$, where $\mathrm{f}(x,y)=x^2+y^2+\dfrac{2}{xy}$.
 - a Find the stationary points on the curve and determine whether each is a minimum, maximum or saddle point.
 - **b** Sketch a section for which y = 1.
- An open-topped box has volume $1\,\mathrm{m}^3$. Its base has dimensions x imes y and its height is z.
 - **a** Find an expression for the surface area in terms of x and y.
 - **b** Use partial differentiation to prove that the surface area is a minimum when $x=2^{\frac{1}{3}}$, $y=2^{\frac{1}{3}}$ and $z=\frac{1}{2^{\frac{2}{3}}}$.
- Find the equation of the tangent plane to xy + yz + zx = 11 at the point where x = 1 and y = 2, writing your answer in the form f(x, y, z) = k, where k is a constant.
- Given that u and v are functions of x and y and that $ux=vy, u^2y=vx^2$, find $\frac{\partial u}{\partial x}$ and show that $\frac{\partial v}{\partial x}=\frac{2u^2y^2+xv^2}{y(2uy^2-2vx^2)}$.