## Matrices - Post 2018 Mix

١.

The matrix A is given by

$$\mathbf{A} = \begin{pmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{pmatrix}$$

(a) Show that 2 is a repeated eigenvalue of  $\mathbf{A}$  and find the other eigenvalue.

(5)

(b) Hence find three non-parallel eigenvectors of A.

(4)

(c) Find a matrix P such that  $P^{-1}AP$  is a diagonal matrix.

**(2)** 

$$\mathbf{M} = \begin{pmatrix} 1 & k & -2 \\ 2 & -4 & 1 \\ 1 & 2 & 3 \end{pmatrix}$$

where k is a constant.

(a) Show that, in terms of k, a characteristic equation for  $\mathbf{M}$  is given by

$$\lambda^3 - (2k+13)\lambda + 5(k+6) = 0$$
(3)

Given that det M = 5

- (b) (i) find the value of *k* 
  - (ii) use the Cayley-Hamilton theorem to find the inverse of  $\mathbf{M}$ .

**(7)** 

$$\mathbf{A} = \begin{pmatrix} 5 & -2 & 5 \\ 0 & 3 & p \\ -6 & 6 & -4 \end{pmatrix} \quad \text{where } p \text{ is a constant}$$
 Given that 
$$\begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix} \text{ is an eigenvector for } \mathbf{A}$$

(a) (i) determine the eigenvalue corresponding to this eigenvector

**(1)** 

(ii) hence show that p = 2

**(2)** 

(iii) determine the remaining eigenvalues and corresponding eigenvectors of A

**(7)** 

(b) Write down a matrix P and a diagonal matrix D such that  $A = PDP^{-1}$ 

**(1)** 

Matrix M is given by

$$\mathbf{M} = \begin{pmatrix} 1 & 0 & a \\ -3 & b & 1 \\ 0 & 1 & a \end{pmatrix}$$

where a and b are integers, such that a < b

Given that the characteristic equation for  ${\bf M}$  is

$$\lambda^3 - 7\lambda^2 + 13\lambda + c = 0$$

where c is a constant,

(a) determine the values of a, b and c.

**(5)** 

(b) Hence, using the Cayley–Hamilton theorem, determine the matrix  $\mathbf{M}^{-1}$ 

**(3)** 

$$\mathbf{A} = \begin{pmatrix} -1 & a \\ 3 & 8 \end{pmatrix}$$

where a is a constant.

(a) Determine, in expanded form in terms of a, the characteristic equation for A.

**(2)** 

(b) Hence use the Cayley-Hamilton theorem to determine values of a and b such that

$$\mathbf{A}^3 = \mathbf{A} + b\mathbf{I}$$

where I is the  $2 \times 2$  identity matrix.

**(4)** 

The matrix M is given by

$$\mathbf{M} = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ -1 & 0 & 4 \end{pmatrix}$$

(a) Show that 4 is an eigenvalue of M, and find the other two eigenvalues.

(4)

(b) For each of the eigenvalues find a corresponding eigenvector.

(4)

(c) Find a matrix P such that  $P^{-1}MP$  is a diagonal matrix.

**(2)**