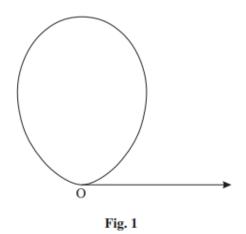
Polar Curves and Calculus with Inverse Trig - Past Paper Questions

- ١.
- (a) A curve has polar equation $r = ae^{-k\theta}$ for $0 \le \theta \le \pi$, where *a* and *k* are positive constants. The points A and B on the curve correspond to $\theta = 0$ and $\theta = \pi$ respectively.
 - (i) Sketch the curve. [2]
 - (ii) Find the area of the region enclosed by the curve and the line AB. [4]

(**b**) Find the exact value of
$$\int_{0}^{\frac{1}{2}} \frac{1}{3+4x^{2}} dx.$$
 [5]

- (a) A curve has polar equation $r = a(1 \cos \theta)$, where a is a positive constant.
 - (i) Sketch the curve. [2]
 - (ii) Find the area of the region enclosed by the section of the curve for which $0 \le \theta \le \frac{1}{2}\pi$ and the line $\theta = \frac{1}{2}\pi$. [6]
- (**b**) Use a trigonometric substitution to show that $\int_{0}^{1} \frac{1}{\left(4-x^{2}\right)^{\frac{3}{2}}} dx = \frac{1}{4\sqrt{3}}.$ [4]
- (c) In this part of the question, $f(x) = \arccos(2x)$.

(a) Fig. 1 shows the curve with polar equation $r = a(1 - \cos 2\theta)$ for $0 \le \theta \le \pi$, where *a* is a positive constant.



Find the area of the region enclosed by the curve. [7]

(b) (i) Given that $f(x) = \arctan(\sqrt{3} + x)$, find f'(x) and f''(x). [4]

3.

- 4.
- (a) A curve has cartesian equation (x² + y²)² = 3xy².
 (i) Show that the polar equation of the curve is r = 3 cos θ sin² θ. [3]

[3]

(ii) Hence sketch the curve.

(**b**) Find the exact value of
$$\int_0^1 \frac{1}{\sqrt{4-3x^2}} \, dx.$$
 [5]

(i) Given that
$$y = \arctan\left(\frac{x}{a}\right)$$
, show that $\frac{dy}{dx} = \frac{a}{a^2 + x^2}$. [4]

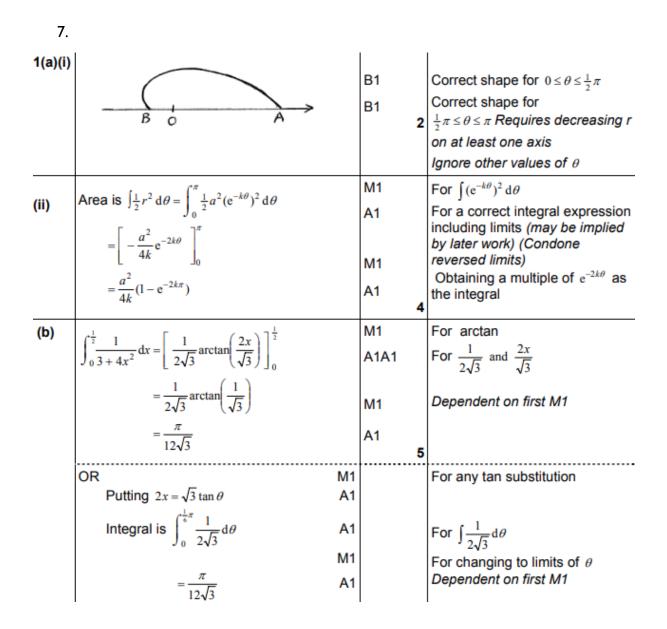
(ii) Find the exact values of the following integrals.

(A)
$$\int_{-2}^{2} \frac{1}{4+x^2} \, \mathrm{d}x$$
 [3]

(B)
$$\int_{-\frac{1}{2}}^{2} \frac{4}{1+4x^2} \, \mathrm{d}x$$
 [3]

6.

- (a) A curve has polar equation $r = a \tan \theta$ for $0 \le \theta \le \frac{1}{3}\pi$, where *a* is a positive constant.
 - (i) Sketch the curve. [3]
 - (ii) Find the area of the region between the curve and the line $\theta = \frac{1}{4}\pi$. Indicate this region on your sketch. [5]

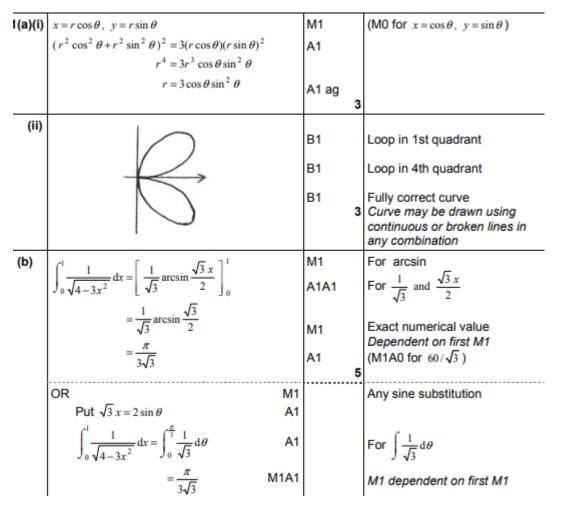


Polar Curves and Calculus with Inverse Trig - Past Paper Answers

8.			
(a)(i)		B2 2	Must include a sharp point at O and have infinite gradient at $\theta = \pi$ Give B1 for <i>r</i> increasing from zero for $0 < \theta < \pi$, or decreasing to zero for $-\pi < \theta < 0$
(ii)	$\int \frac{1}{2\pi} dx = 0$	M1	For integral of $(1 - \cos\theta)^2$
	Area is $\int \frac{1}{2}r^2 d\theta = \int_0^{\frac{1}{2}\pi} \frac{1}{2}a^2(1-\cos\theta)^2 d\theta$ = $\frac{1}{2}a^2 \int_0^{\frac{1}{2}\pi} (1-2\cos\theta + \frac{1}{2}(1+\cos 2\theta)) d\theta$	Al	For a correct integral expression including limits (may be implied by later work)
	20	B1	Using $\cos^2 \theta = \frac{1}{2}(1 + \cos 2\theta)$
	$= \frac{1}{2}a^2 \left[\frac{3}{2}\theta - 2\sin\theta + \frac{1}{4}\sin 2\theta \right]_0^{\frac{1}{2}\pi}$	B1B1 ft	Integrating $a + b\cos\theta$ and $k\cos 2\theta$
	$= \frac{1}{2}a^2(\frac{3}{4}\pi - 2)$	B1 6	Accept 0.178a ²
(b)	Put $x = 2\sin\theta$	M1	or $x = 2\cos\theta$
	Integral is $\int_{0}^{\frac{1}{6}\pi} \frac{1}{\left(4-4\sin^2\theta\right)^{\frac{3}{2}}} (2\cos\theta) d\theta$	Al	Limits not required
	$= \int_0^{\frac{1}{6}\pi} \frac{2\cos\theta}{8\cos^3\theta} \mathrm{d}\theta = \int_0^{\frac{1}{6}\pi} \frac{1}{4}\sec^2\theta \mathrm{d}\theta$		
	$= \left[\frac{1}{4} \tan \theta \right]_{0}^{\frac{1}{6}\pi}$	M1	For $\int \sec^2 \theta d\theta = \tan \theta$
	$=\frac{1}{1} \times \frac{1}{1} = \frac{1}{1}$	Al ag	SR If $x = 2 \tanh u$ is used M1 for $\frac{1}{2} \sinh(\frac{1}{2} \ln 3)$
	$=\overline{4} \times \overline{\sqrt{3}} = \overline{4\sqrt{3}}$	4	M1 for $\frac{1}{4}\sinh(\frac{1}{2}\ln 3)$ A1 for $\frac{1}{8}(\sqrt{3} - \frac{1}{\sqrt{3}}) = \frac{1}{4\sqrt{3}}$ (max 2 / 4)
(c)(i)	$f'(x) = \frac{-2}{\sqrt{1 - 4x^2}}$	B2 2	Give B1 for any non-zero real multiple of this (or for $\frac{-2}{\sin y}$ etc)

	1		1
1(a)		M1	For $\int (1-\cos 2\theta)^2 d\theta$
	Area is $\int_{0}^{\pi} \frac{1}{2} a^2 (1 - \cos 2\theta)^2 d\theta$	A1	Correct integral expression including limits (may be implied by later work)
	$= \int_{0}^{\pi} \frac{1}{2} a^{2} \left(1 - 2\cos 2\theta + \frac{1}{2} (1 + \cos 4\theta) \right) d\theta$	B1	For $\cos^2 2\theta = \frac{1}{2}(1 + \cos 4\theta)$
	$= \frac{1}{2}a^{2}\left[\frac{3}{2}\theta - \sin 2\theta + \frac{1}{8}\sin 4\theta\right]_{0}^{\pi}$ $= \frac{3}{4}\pi a^{2}$	B1B1B1 ft	Integrating $a + b \cos 2\theta + c \cos 4\theta$ [Max B2 if answer incorrect and
	4	A1 7	no mark has previously been lost]
(b)(i)		M1	Applying $\frac{d}{du} \arctan u = \frac{1}{1+u^2}$
	1		or $\frac{dy}{dx} = \frac{1}{\sec^2 y}$
	$f'(x) = \frac{1}{1 + (\sqrt{3} + x)^2}$	A1	
	$f'(x) = \frac{1}{1 + (\sqrt{3} + x)^2}$ $f''(x) = \frac{-2(\sqrt{3} + x)}{(1 + (\sqrt{3} + x)^2)^2}$	M1 A1	Applying chain (or quotient) rule
	$(1+(\sqrt{3}+x))$	4	

9.



- 1	1	
- 1		

(b)(i)	$y = \arctan \frac{x}{a}$		
	$\Rightarrow x = a \tan y$	M1	(a) $\tan y = $ and attempt to differentiate both sides
	$\Rightarrow \frac{dx}{dy} = a \sec^2 y$ $\Rightarrow \frac{dx}{dy} = a(1 + \tan^2 y)$	Al	Or $\sec^2 y \frac{dy}{dx} = \frac{1}{a}$
	$\Rightarrow \frac{dx}{dy} = a(1 + \tan^2 y)$	A1	Use $\sec^2 y = 1 + \tan^2 y$ o.e.
	$\implies \frac{dy}{dx} = \frac{a}{a^2 + x^2}$	Al (ag)	www
		4	SC1: Use derivative of arctan <i>x</i> and Chain Rule (properly shown)
		-4 M1	arctan alone, or any tan substitution
(ii)(A)	$\int_{-2}^{2} \frac{1}{4+x^{2}} dx = \left[\frac{1}{2}\arctan\frac{x}{2}\right]_{-2}^{2}$	Al	$\frac{1}{2}$ and $\frac{x}{2}$, or $\int \frac{1}{2} d\theta$ without limits
	$=\frac{\pi}{4}$	Al	Evaluated in terms of π
		3	
(ii)(B)	$\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{4}{1+4x^2} dx = \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{\frac{1}{4}+x^2} dx$	M1	arctan alone, or any tan substitution
	$= \left[2 \arctan\left(2x\right)\right]_{\frac{1}{2}}^{\frac{1}{2}}$	Al	2 and 2 <i>x</i> , or $\int 2d\theta$ without limits
	$=\pi$	A1 3	Evaluated in terms of π 19

