The Knowledge Self-Check

Discriminant and how it determines the number of roots of a quadratic

 $b^2 - 4ac$, if >0 then 2 distinct real roots, =0 then one repeated real root, <0 no real roots

Quadratic formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

The factor theorem (x-a) is a factor of f(x) if and only if f(a)=0

Sine rule, cosine rule and area of a triangle

 $\frac{\sin A}{a} = \frac{\sin B}{b}$, $a^2 = b^2 + c^2 - 2bc \cos A$, Area $= \frac{1}{2}ab \sin C$

Equation of a circle

Circle with centre (a,b) and radius r: $(x - a)^2 + (y - b)^2 = r^2$

Graphs of sin, cos and tan (in both degrees and radians) Check on Desmos

Special values of sin, cos and tan (in both degrees and radians) Check with your calculator – should know for 0°, 30°, 45°, 60°, 90°

Trigonometric identity for $\tan\theta$, the "Pythagorean" identity, and the two that derive from this $\tan\theta = \frac{\sin\theta}{\cos\theta}$, $\sin^2\theta + \cos^2\theta = 1$, $\tan^2\theta + 1 = \sec^2\theta$, $1 + \cot^2\theta = \csc^2\theta$

Laws of logarithms

 $log A + log B = log(AB), log A - log B = log \left(\frac{A}{B}\right), log A^n = n \log A$

Graphs of $y = x^2$, $y = x^3$, $y = \frac{1}{x}$, $y = \sqrt{x}$, $y = a^x$, $y = \log_a x$ Check with Desmos

How to determine the nature of stationary points from $\frac{d^2y}{dx^2}$ If >0 then local min, <0 then local max, =0 need to check gradient either side

Definitions of concave upwards and concave downwards

Concave upwards means $\frac{d^2y}{dx^2} > 0$, concave downwards means $\frac{d^2y}{dx^2} < 0$

Derivatives of $y = x^n$ and $y = e^{kx}$

Function	Differentiated				
$y = x^n$	$\frac{dy}{dx} = nx^{n-1}$				
$y = e^{kx}$	$\frac{dy}{dx} = ke^{kx}$				

Graph transformations y = f(x) + a, y = f(x + a), y = af(x), y = f(ax), y = -f(x), y = f(-x)

Translation by $\binom{0}{a}$, translation by $\binom{-a}{0}$, stretch parallel to y-axis by sf a, stretch parallel to x-axis by sf $\frac{1}{a}$, reflection in x-axis, reflection in y-axis

The 5 constant acceleration formulae (SUVAT)

 $v = u + at, s = vt - \frac{1}{2}at^2, s = ut + \frac{1}{2}at^2, s = \frac{u+v}{2}t, v^2 = u^2 + 2as$

Special sums

 $\sum_{r=1}^{n} r = \frac{n(n+1)}{2}, \sum_{r=1}^{n} r^2 = \frac{n(n+1)(2n+1)}{6}, \sum_{r=1}^{n} r^3 = \frac{n^2(n+1)^2}{4}$

|wz| and arg(wz) in terms of |w|, |z|, arg(w), arg(z)|wz| = |w||z|, arg(wz) = arg(w) + arg(z)

Modulus-argument form for a complex number with modulus r and argument θ $r(\cos \theta + i \sin \theta)$

Complex loci for the forms $|z - \alpha| = r$, $\arg(z - \alpha) = \theta$ and $|z - \alpha| = |z - \beta|$ Circle radius r centred at α , half-line starting at α and at an angle of θ above the positive horizontal, perpendicular bisector of α and β

Arc length and area of sector formulae given angle in radians

Arc length = θr , Area of sector = $\frac{\theta r^2}{2}$

nth terms and partial sums of arithmetic and geometric sequences (and sum to infinity) Arithmetic: $u_n = a + (n-1)d$, $S_n = \frac{n}{2}[2a + (n-1)d]$

Geometric: $u_n = ar^{n-1}$, $S_n = \frac{a(r^{n-1})}{r-1}$, $S_{\infty} = \frac{a}{1-r}$ (if |r| < 1)

Small angle approximations for $y = \sin \theta$, $y = \cos \theta$ and $y = \tan \theta$ $\sin \theta \approx \theta$, $\cos \theta \approx 1 - \frac{\theta^2}{2}$, $\tan \theta \approx \theta$, where θ is in radians Standard matrix transformations in 2D

Reflection in x-axis
$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
, reflection in y-axis $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$
Reflection in $y = x \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, reflection in $y = -x \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$
Rotation through θ anti-clockwise about O $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$
Stretch s.f. *c* parallel to x-axis, s.f. *d* parallel to y-axis $\begin{pmatrix} c & 0 \\ 0 & d \end{pmatrix}$
Shear, x-axis fixed, with (0,1) mapped to $(k, 1): \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}$,
Shear, y-axis fixed, with (1,0) mapped to $(1,k): \begin{pmatrix} 1 & 0 \\ k & 1 \end{pmatrix}$

Inverse and determinant of 2x2 matrices, and geometric significance of determinant

 $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$, if $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ then $M^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$, |det M| = area scale factor

Roots of polynomials for quadratics, cubics, quartics (sums, products etc.)

If α , β are roots of $ax^2 + bx + c = 0$ then $\alpha + \beta = -\frac{b}{a}$, $\alpha\beta = \frac{c}{a}$ If α , β , γ are roots of $ax^3 + bx^2 + cx + d = 0$ then $\alpha + \beta + \gamma = -\frac{b}{a}$, $\alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a}$, $\alpha\beta\gamma = -\frac{d}{a}$ If α , β , γ , δ are roots of $ax^4 + bx^3 + cx^2 + dx + e = 0$ then $\alpha + \beta + \gamma + \delta = -\frac{b}{a}$, $\alpha\beta + \alpha\gamma + \alpha\delta + \beta\gamma + \beta\delta + \gamma\delta = \frac{c}{a}$, $\alpha\beta\gamma + \alpha\beta\delta + \alpha\gamma\delta + \beta\gamma\delta = -\frac{d}{a}$, $\alpha\beta\gamma\delta = \frac{e}{a}$

Double angle - $sin(2\theta)$, $cos(2\theta)$ (in 3 different ways) and $tan(2\theta)$ $sin 2\theta = 2 sin \theta cos \theta$, $cos 2\theta = cos^2 \theta - sin^2 \theta = 2 cos^2 \theta - 1 = 1 - 2 sin^2 \theta$, $tan 2\theta = \frac{2 tan \theta}{1 - tan^2 \theta}$

Standard matrix transformations in 3D

Reflection in the plane
$$x = 0 \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, reflection in the plane $y = 0 \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$,
reflection in the plane $z = 0 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$.
Rotation through θ about the x-axis $\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}$, rotation through θ about the y-axis $\begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$, rotation through θ about the z-axis $\begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

Product and quotient rules

If y = uv, $\frac{dy}{dx} = u'v + v'u$. If $y = \frac{u}{v}$, $\frac{dy}{dx} = \frac{u'v - v'u}{v^2}$.

The formula for the angle between two vectors

 $\cos\theta = \frac{\boldsymbol{a} \cdot \boldsymbol{b}}{|\boldsymbol{a}||\boldsymbol{b}|}$

The general equation of a plane

 $\mathbf{r} \cdot \mathbf{n} = p$, where **n** is the normal to the plane and p is a constant

Chain rule for $y = (\text{stuff})^n$, $y = e^{\text{stuff}}$, $y = a^{\text{stuff}}$, y = ln(stuff), y = sin(stuff), y = cos(stuff), y = tan(stuff)

Simple function	<mark>Differentiated</mark>	Chain function	Differentiated
$y = x^n$	$\frac{dy}{dx} = nx^{n-1}$	$y = (stuff)^n$	$\frac{dy}{dx} = stuff' \times n(stuff)^{n-1}$
$y = e^x$	$\frac{dy}{dx} = e^x$	$y = e^{\text{stuff}}$	$\frac{dy}{dx} = stuff' \times e^{stuff}$
$y = a^x$	$\frac{dy}{dx} = (\ln a) \times a^x$	$y = a^{\text{stuff}}$	$\frac{dy}{dx} = stuff' \times (ln a) \times a^{stuff}$
y = ln(x)	$\frac{dy}{dx} = \frac{1}{x}$	y = ln(stuff)	$\frac{dy}{dx} = stuff' \times \frac{1}{stuff}$
y = sin x	$\frac{dy}{dx} = \cos x$	y = sin(stuff)	$\frac{dy}{dx} = stuff' \times cos(stuff)$
$y = \cos x$	$\frac{dy}{dx} = -\sin x$	y = cos(stuff)	$\frac{dy}{dx} = stuff' \times - sin(stuff)$
y = tan x	$\frac{dy}{dx} = \sec^2 x$	y = tan(stuff)	$\frac{dy}{dx} = stuff' \times sec^2(stuff)$

The form of	of partia	al fract	ions for $\frac{mx}{(x+p)}$	$\frac{(x+n)}{(x+q)}$, $\frac{1}{(x+q)}$	$\frac{mx+n}{(x+p)(x+n)}$	$\frac{1}{(q+q)^2}$ and	$\frac{mx+n}{(x+p)(x^2+$	$\overline{q^2)}$		
mx+n	A	B	mx+n	A		L C	and	mx+n	A	Bx+C
$\frac{(x+p)(x+q)}{(x+q)}$	$-\frac{1}{x+p}$	$\int \frac{1}{x+q}$	$(x+p)(x+q)^2$	$-\frac{1}{x+p}$	$\frac{1}{x+q}$	$\frac{1}{(x+q)^2}$	anu	$(x+p)(x^2+q^2)$	$-\frac{1}{x+p}$	$\frac{1}{x^2+q^2}$

The gradient of a curve defined parametrically

$$\frac{dy}{dx} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)}$$

The formula for P(A|B)

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Two ways of checking for the independence of events A and B Either check $P(A \cap B) = P(A) \times P(B)$ or P(A|B) = P(A) Both definitions of statistical outliers

More than 2 standard deviations away from the mean or more than 1.5 IQR away from the nearest quartile

Distribution of the sample mean of *n* Normally distributed random variables sampled from $N(\mu, \sigma^2)$

