The Knowledge Self-Check

Discriminant and how it determines the number of roots of a quadratic

 $b^2 - 4ac$, if >0 then 2 distinct real roots, =0 then one repeated real root, <0 no real roots

Quadratic formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

The factor theorem

(x-a) is a factor of f(x) if and only if f(a)=0

Sine rule, cosine rule and area of a triangle

$$\frac{\sin A}{a} = \frac{\sin B}{b}$$
, $a^2 = b^2 + c^2 - 2bc \cos A$, Area $= \frac{1}{2}ab \sin C$

Equation of a circle

Circle with centre (a,b) and radius r: $(x-a)^2 + (y-b)^2 = r^2$

Graphs of sin, cos and tan

Check on Desmos

Special values of sin, cos and tan

Check with your calculator – should know for 0°, 30°, 45°, 60°, 90°

Trigonometric identity for $tan\theta$, the "Pythagorean" identity, and the two that derive from this

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
, $\sin^2 \theta + \cos^2 \theta = 1$, $\tan^2 \theta + 1 = \sec^2 \theta$, $1 + \cot^2 \theta = \csc^2 \theta$

Laws of logarithms

$$\log A + \log B = \log(AB), \log A - \log B = \log\left(\frac{A}{B}\right), \log A^n = n \log A$$

Graphs of
$$y = x^2$$
, $y = x^3$, $y = \frac{1}{x}$, $y = \sqrt{x}$, $y = a^x$, $y = \log_a x$

Check with Desmos

How to determine the nature of stationary points from $\frac{d^2y}{dx^2}$

If >0 then local min, <0 then local max, =0 need to check gradient either side

Definitions of concave upwards and concave downwards

Concave upwards means
$$\frac{d^2y}{dx^2} > 0$$
, concave downwards means $\frac{d^2y}{dx^2} < 0$

Derivatives of $y = x^n$ and $y = e^{kx}$

Function	Differentiated
$y = x^n$	$\frac{dy}{dx} = nx^{n-1}$
$y=e^{kx}$	$\frac{dy}{dx} = ke^{kx}$

Graph transformations
$$y = f(x) + a$$
, $y = f(x+a)$, $y = af(x)$, $y = f(ax)$, $y = -f(x)$, $y = f(-x)$

Translation by
$$\begin{pmatrix} 0 \\ a \end{pmatrix}$$
, translation by $\begin{pmatrix} -a \\ 0 \end{pmatrix}$, stretch parallel to y-axis by sf a, stretch parallel to x-

axis by sf
$$\frac{1}{a}$$
, reflection in x-axis, reflection in y-axis