The Knowledge Self-Check

Discriminant and how it determines the number of roots of a quadratic

 $b^2 - 4ac$, if >0 then 2 distinct real roots, =0 then one repeated real root, <0 no real roots

Quadratic formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

The factor theorem

(x-a) is a factor of f(x) if and only if f(a)=0

Sine rule, cosine rule and area of a triangle

$$\frac{\sin A}{a} = \frac{\sin B}{b}$$
, $a^2 = b^2 + c^2 - 2bc \cos A$, Area $= \frac{1}{2}ab \sin C$

Equation of a circle

Circle with centre (a,b) and radius r: $(x-a)^2 + (y-b)^2 = r^2$

Graphs of sin, cos and tan (in both degrees and radians)

Check on Desmos

Special values of sin, cos and tan (in both degrees and radians)

Check with your calculator – should know for 0°, 30°, 45°, 60°, 90°

Trigonometric identity for $tan\theta$, the "Pythagorean" identity, and the two that derive from this

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
, $\sin^2 \theta + \cos^2 \theta = 1$, $\tan^2 \theta + 1 = \sec^2 \theta$, $1 + \cot^2 \theta = \csc^2 \theta$

Laws of logarithms

$$log A + log B = log(AB), log A - log B = log(\frac{A}{B}), log A^n = n log A$$

Graphs of
$$y = x^2$$
, $y = x^3$, $y = \frac{1}{x}$, $y = \sqrt{x}$, $y = a^x$, $y = \log_a x$

Check with Desmos

How to determine the nature of stationary points from $\frac{d^2y}{dx^2}$

If >0 then local min, <0 then local max, =0 need to check gradient either side

Definitions of concave upwards and concave downwards

Concave upwards means
$$\frac{d^2y}{dx^2} > 0$$
, concave downwards means $\frac{d^2y}{dx^2} < 0$

Derivatives of $y = x^n$ and $y = e^{kx}$

Function	Differentiated		
$y = x^n$	$\frac{dy}{dx} = nx^{n-1}$		
$y = e^{kx}$	$\frac{dy}{dx} = ke^{kx}$		

Graph transformations y = f(x) + a, y = f(x + a), y = af(x), y = f(ax), y = -f(x), y = f(-x)

Translation by $\binom{0}{a}$, translation by $\binom{-a}{0}$, stretch parallel to y-axis by sf a, stretch parallel to x-axis by sf $\frac{1}{a}$, reflection in x-axis, reflection in y-axis

The 5 constant acceleration formulae (SUVAT)

$$v = u + at$$
, $s = vt - \frac{1}{2}at^2$, $s = ut + \frac{1}{2}at^2$, $s = \frac{u+v}{2}t$, $v^2 = u^2 + 2as$

Special sums

$$\sum_{r=1}^{n} r = \frac{n(n+1)}{2}$$
, $\sum_{r=1}^{n} r^2 = \frac{n(n+1)(2n+1)}{6}$, $\sum_{r=1}^{n} r^3 = \frac{n^2(n+1)^2}{4}$

|wz| and arg(wz) in terms of |w|, |z|, arg(w), arg(z)

$$|wz| = |w||z|$$
, $arg(wz) = arg(w) + arg(z)$

Modulus-argument form for a complex number with modulus r and argument θ $r(\cos\theta + i\sin\theta)$

Complex loci for the forms $|z - \alpha| = r$, $\arg(z - \alpha) = \theta$ and $|z - \alpha| = |z - \beta|$

Circle radius r centred at α , half-line starting at α and at an angle of θ above the positive horizontal, perpendicular bisector of α and β

Arc length and area of sector formulae given angle in radians

Arc length =
$$\theta r$$
, Area of sector = $\frac{\theta r^2}{2}$

nth terms and partial sums of arithmetic and geometric sequences (and sum to infinity)

Arithmetic:
$$u_n = a + (n-1)d$$
, $S_n = \frac{n}{2}[2a + (n-1)d]$

Geometric:
$$u_n = ar^{n-1}$$
, $S_n = \frac{a(r^{n-1})}{r-1}$, $S_\infty = \frac{a}{1-r}$ (if $|r| < 1$)

Small angle approximations for $y = \sin \theta$, $y = \cos \theta$ and $y = \tan \theta$

$$\sin \theta \approx \theta$$
, $\cos \theta \approx 1 - \frac{\theta^2}{2}$, $\tan \theta \approx \theta$, where θ is in radians

Standard matrix transformations in 2D

Reflection in x-axis
$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
, reflection in y-axis $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$

Reflection in
$$y = x \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, reflection in $y = -x \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$

Rotation through
$$\theta$$
 anti-clockwise about $O\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$

Stretch s.f. c parallel to x-axis, s.f. d parallel to y-axis
$$\begin{pmatrix} c & 0 \\ 0 & d \end{pmatrix}$$

Shear, x-axis fixed, with
$$(0,1)$$
 mapped to $(k,1)$: $\begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}$,

Shear, y-axis fixed, with (1,0) mapped to (1, k):
$$\begin{pmatrix} 1 & 0 \\ k & 1 \end{pmatrix}$$

Inverse and determinant of 2x2 matrices, and geometric significance of determinant

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$
, if $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ then $M^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$, $|det M| =$ area scale factor

Roots of polynomials for quadratics, cubics, quartics (sums, products etc.)

If
$$\alpha$$
, β are roots of $ax^2 + bx + c = 0$ then $\alpha + \beta = -\frac{b}{a}$, $\alpha\beta = \frac{c}{a}$

If
$$\alpha, \beta, \gamma$$
 are roots of $ax^3 + bx^2 + cx + d = 0$ then $\alpha + \beta + \gamma = -\frac{b}{a}$, $\alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a}$, $\alpha\beta\gamma = -\frac{d}{a}$

If
$$\alpha, \beta, \gamma, \delta$$
 are roots of $ax^4 + bx^3 + cx^2 + dx + e = 0$ then $\alpha + \beta + \gamma + \delta = -\frac{b}{a}$, $\alpha\beta + \alpha\gamma + \alpha\delta + \beta\gamma + \beta\delta + \gamma\delta = \frac{c}{a}$, $\alpha\beta\gamma + \alpha\beta\delta + \alpha\gamma\delta + \beta\gamma\delta = -\frac{d}{a}$, $\alpha\beta\gamma\delta = \frac{e}{a}$

Double angle - $sin(2\theta)$, $cos(2\theta)$ (in 3 different ways) and $tan(2\theta)$

$$\sin 2\theta = 2\sin\theta\cos\theta, \cos 2\theta = \cos^2\theta - \sin^2\theta = 2\cos^2\theta - 1 = 1 - 2\sin^2\theta, \tan 2\theta = \frac{2\tan\theta}{1-\tan^2\theta}$$

Standard matrix transformations in 3D

Reflection in the plane
$$x = 0$$
 $\begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, reflection in the plane $y = 0$ $\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, reflection in the plane $z = 0$ $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$.

Rotation through
$$\theta$$
 about the x -axis $\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}$, rotation through θ about the y -axis

$$\begin{pmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{pmatrix}, \text{ rotation through } \theta \text{ about the } z\text{-axis} \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Product and quotient rules

If
$$y = uv$$
, $\frac{dy}{dx} = u'v + v'u$. If $y = \frac{u}{v}$, $\frac{dy}{dx} = \frac{u'v - v'u}{v^2}$.

The formula for the angle between two vectors

$$\cos\theta = \frac{\boldsymbol{a} \cdot \boldsymbol{b}}{|\boldsymbol{a}||\boldsymbol{b}|}$$

The general equation of a plane

 $\mathbf{r} \cdot \mathbf{n} = p$, where **n** is the normal to the plane and p is a constant

Chain rule for $y = (\text{stuff})^n$, $y = e^{\text{stuff}}$, $y = a^{\text{stuff}}$, y = ln(stuff), y = sin(stuff), y = cos(stuff), y = tan(stuff)

Simple function	Differentiated	Chain function	Differentiated
$y = x^n$	$\frac{dy}{dx} = nx^{n-1}$	$y = (stuff)^n$	$\frac{dy}{dx} = stuff' \times n(stuff)^{n-1}$
$y = e^x$	$\frac{dy}{dx} = e^x$	$y=e^{ m stuff}$	$\frac{dy}{dx} = stuff' \times e^{\text{stuff}}$
$y = a^x$	$\frac{dy}{dx} = (\ln a) \times a^x$	$y = a^{\text{stuff}}$	$\frac{dy}{dx} = stuff' \times (\ln a) \times a^{\text{stuff}}$
y = ln(x)	$\frac{dy}{dx} = \frac{1}{x}$	y = ln(stuff)	$\frac{dy}{dx} = stuff' \times \frac{1}{\text{stuff}}$
$y = \sin x$	$\frac{dy}{dx} = \cos x$	y = sin(stuff)	$\frac{dy}{dx} = stuff' \times cos(stuff)$
$y = \cos x$	$\frac{dy}{dx} = -\sin x$	y = cos(stuff)	$\frac{dy}{dx} = stuff' \times - sin(stuff)$
$y = \tan x$	$\frac{dy}{dx} = \sec^2 x$	y = tan(stuff)	$\frac{dy}{dx} = stuff' \times sec^2(stuff)$

The form of partial fractions for
$$\frac{mx+n}{(x+p)(x+q)}$$
, $\frac{mx+n}{(x+p)(x+q)^2}$ and $\frac{mx+n}{(x+p)(x^2+q^2)}$

$$\frac{mx+n}{(x+p)(x+q)} = \frac{A}{x+p} + \frac{B}{x+q}, \quad \frac{mx+n}{(x+p)(x+q)^2} = \frac{A}{x+p} + \frac{B}{x+q} + \frac{C}{(x+q)^2} \quad \text{and} \quad \frac{mx+n}{(x+p)(x^2+q^2)} = \frac{A}{x+p} + \frac{Bx+C}{x^2+q^2}$$

The gradient of a curve defined parametrically

$$\frac{dy}{dx} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)}$$

The formula for P(A|B)

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Two ways of checking for the independence of events A and BEither check $P(A \cap B) = P(A) \times P(B)$ or P(A|B) = P(A) Both definitions of statistical outliers

More than 2 standard deviations away from the mean or more than 1.5 IQR away from the nearest quartile

Distribution of the sample mean of *n* Normally distributed random variables sampled from $N(\mu, \sigma^2)$

$$\bar{X}_n \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

The relationship between Cartesian coordinates (x, y) and polar coordinates (r, θ)

$$x = r \cos \theta$$
, $y = r \sin \theta$, $r = \sqrt{x^2 + y^2}$, $\tan \theta = \frac{y}{r}$

The derivatives of $\arcsin x$, $\arccos x$ and $\arctan x$

$$\frac{d}{dx}(\arcsin x) = \frac{1}{\sqrt{1-x^2}}, \frac{d}{dx}(\arccos x) = -\frac{1}{\sqrt{1-x^2}}, \frac{d}{dx}(\arctan x) = \frac{1}{1+x^2}$$